библиотеки машинного обучения ничем не ограничены

5 лучших библиотек машинного обучения

Sep 15, 2019 · 3 min read

библиотеки машинного обучения ничем не ограничены. Смотреть фото библиотеки машинного обучения ничем не ограничены. Смотреть картинку библиотеки машинного обучения ничем не ограничены. Картинка про библиотеки машинного обучения ничем не ограничены. Фото библиотеки машинного обучения ничем не ограничены

За последние несколько лет рост машинного обучения достиг стремительных темпов. Это связано с выпуском библиотек машинного обучения (МО)/глубокого обучения (ГО), которые абстрагируются от сложности скаффолдинга или реализации модели МО/ГО.

МО/ГО включает в себя множество математических вычислений и операций, особенно Matrix. С помощью МО/ГО даже простой новичок в МО может начать работу как профессионал.

Машинное обучение использует математические мод е ли общего назначения для ответа на конкретные вопросы с помощью данных. На протяжении многих лет машинное обучение использовалось для обнаружения спам-писем, создания умных ракет, интеллектуальных роботов и домов, обнаружения объектов с помощью компьютерного зрения, распознавания речи, а также для создания системы, которая может писать (романы, стихи и т. д.), рекомендовать продукты клиентам и прогнозировать стоимость товаров.

В этой статье мы обсудим самые популярные библиотеки МО/ГО.

TensorFlow

Это самая популярная библиотека МО/ГО в современном мире. По выходу ее популярность стремительно возросла и превзошла уже существующие библиотеки благодаря простоте API. Google выпустил ее в ноябре 2015 года.

Она написана на Python, но теперь есть и порт JavaScript: tensorflow.js. Его появление связано с ростом популярности JavaScript после релиза Node.js.

TensorFlow — бесплатная open-source библиотека для потоков данных и дифференцированного программирования; это символическая математическая библиотека, которая также используется для приложений машинного обучения, таких как нейронные сети.

Theano

Theano — это библиотека Python для быстрых числовых вычислений, которая может работать на CPU или GPU. Она разработана группой LISA (теперь MILA) в Монреальском университете в Канаде, и названа в честь древнегреческого математика, жены Пифагора, Феано.

Theano — это библиотека Python и оптимизирующий компилятор для манипулирования и оценки математических выражений, в особенности матрично-значных.

PyTorch

Это библиотека глубокого обучения, созданная Facebook и написанная на Python.

По сравнению с Tensorflow она более простая для изучения и использования, однако Tensorflow все равно превосходит ее по популярности. Причина заключается в том, что Tensorflow включает в себя широкий спектр применения в МО/ГО. Тем не менее PyTorch предоставляет более простой API для работы с нейронными сетями.

PyTorch — это библиотека глубокого обучения, основанная на библиотеке Torch и используемая для таких приложений, как компьютерное зрение и обработка естественного языка.

Scikit-learn

Эта популярная библиотека МО создана на NumPy, SciPy и matplotlib. Основное внимание в ней уделяется алгоритмам МО:

Как и PyTorch, эта библиотека менее развита по сравнению с Tensorflow, однако она предоставляет простые и эффективные инструменты для обнаружения и анализа данных.

Keras

Keras — это библиотека ГО, которая объединяет функции других библиотек, таких как Tensorflow, Theano и CNTK, написанная на Python.

У Keras есть преимущество над конкурентами, такими как Scikit-learn и PyTorch, поскольку она работает поверх Tensorflow.

Keras может работать поверх TensorFlow, Microsoft Cognitive Toolkit, Theano или PlaidML. Разработанная для быстрого экспериментирования с глубокими нейронными сетями, она ориентируется на удобство использования, модульность и расширяемость.

Источник

Используйте фреймворк NeoML для разработки, обучения и запуска моделей машинного обучения.

библиотеки машинного обучения ничем не ограничены. Смотреть фото библиотеки машинного обучения ничем не ограничены. Смотреть картинку библиотеки машинного обучения ничем не ограничены. Картинка про библиотеки машинного обучения ничем не ограничены. Фото библиотеки машинного обучения ничем не ограничены

Нейронные сети с поддержкой более 100 типов слоев

библиотеки машинного обучения ничем не ограничены. Смотреть фото библиотеки машинного обучения ничем не ограничены. Смотреть картинку библиотеки машинного обучения ничем не ограничены. Картинка про библиотеки машинного обучения ничем не ограничены. Фото библиотеки машинного обучения ничем не ограничены

Традиционное машинное обучение: более 20 алгоритмов (классификация, регрессия, кластеризация и т. д.)

библиотеки машинного обучения ничем не ограничены. Смотреть фото библиотеки машинного обучения ничем не ограничены. Смотреть картинку библиотеки машинного обучения ничем не ограничены. Картинка про библиотеки машинного обучения ничем не ограничены. Фото библиотеки машинного обучения ничем не ограничены

Поддержка CPU и GPU, высокая скорость выполнения модели

библиотеки машинного обучения ничем не ограничены. Смотреть фото библиотеки машинного обучения ничем не ограничены. Смотреть картинку библиотеки машинного обучения ничем не ограничены. Картинка про библиотеки машинного обучения ничем не ограничены. Фото библиотеки машинного обучения ничем не ограничены

библиотеки машинного обучения ничем не ограничены. Смотреть фото библиотеки машинного обучения ничем не ограничены. Смотреть картинку библиотеки машинного обучения ничем не ограничены. Картинка про библиотеки машинного обучения ничем не ограничены. Фото библиотеки машинного обучения ничем не ограничены

Языки: C ++, Java, Objective С, Python

библиотеки машинного обучения ничем не ограничены. Смотреть фото библиотеки машинного обучения ничем не ограничены. Смотреть картинку библиотеки машинного обучения ничем не ограничены. Картинка про библиотеки машинного обучения ничем не ограничены. Фото библиотеки машинного обучения ничем не ограничены

Кроссплатформенность: один и тот же код можно запустить в Windows, Linux, macOS, iOS и на Android

Как ABBYY использует NeoML?

Разработчики ABBYY используют NeoML для задач компьютерного зрения и обработки естественного языка, включая улучшение изображений, классификацию, анализ структуры документов, распознавание текста, извлечение данных из структурированных и неструктурированных документов.

Кроссплатформенность

Исходный код

Запускайте модели в облачной среде, на десктопах и мобильных платформах.

Лицензия: Apache 2.0

Кроссплатформенность

Запускайте модели в облачной среде, на десктопах и мобильных платформах.

Источник

Ограничения машинного обучения

Привет, Хабр! Представляю вашему вниманию перевод статьи “The Limitations of Machine Learning“ автора Matthew Stewart.

Большинство людей, читающих эту статью, вероятно, знакомы с машинным обучением и соответствующими алгоритмами, используемыми для классификации или прогнозирования результатов на основе данных. Тем не менее, важно понимать, что машинное обучение не является решением всех проблем. Учитывая полезность машинного обучения, может быть трудно согласиться с тем, что иногда это не лучшее решение проблемы.

библиотеки машинного обучения ничем не ограничены. Смотреть фото библиотеки машинного обучения ничем не ограничены. Смотреть картинку библиотеки машинного обучения ничем не ограничены. Картинка про библиотеки машинного обучения ничем не ограничены. Фото библиотеки машинного обучения ничем не ограничены

В наше время гипербола о машинном обучении и искусственном интеллекте повсеместна. Возможно, это правильно, учитывая, что потенциал для этой области огромен. За последние несколько лет число консалтинговых агентств по ИИ возросло, и, согласно отчету Indeed, количество рабочих мест, связанных с ИИ, увеличилось на 100% в период с 2015 по 2018 годы.

По состоянию на декабрь 2018 года Forbes обнаружил, что 47% бизнеса имеют по крайней мере одну возможность использования ИИ в своем бизнес-процессе, a в отчете Deloitte говорится, что уровень проникновения корпоративного программного обеспечения со встроенным ИИ и облачных сервисов разработки ИИ, достигнет примерно 87 и 83 процентов соответственно. Эти цифры впечатляют — если вы планируете сменить карьеру в ближайшее время, ИИ кажется неплохой областью.

Все кажется великолепным, верно? Компании счастливы, и, по-видимому, потребители тоже счастливы, иначе компании не использовали бы ИИ.

Это здорово, и я тоже большой поклонник машинного обучения и искусственного интеллекта. Однако бывают случаи, когда использование машинного обучения просто не нужно, не имеет смысла, и иногда, когда реализация может привести к трудностям.

Ограничение 1 – Этика

Легко понять, почему машинное обучение оказало такое глубокое влияние на мир, но что менее ясно, каковы именно его возможности и, что еще важнее, каковы его ограничения. Юваль Ной Харари, как известно, придумал термин «датаизм», который относится к предполагаемому новому этапу цивилизации, в который мы вступаем, когда мы доверяем алгоритмам и данным больше, чем собственному суждению и логике.

Хотя эта идея может показаться смешной, но помните, когда вы в последний раз ездили в отпуск и следовали инструкциям GPS, а не своим собственным суждениям о карте — ставите ли вы под сомнение оценку GPS? Люди буквально въезжали в озера, потому что слепо следовали инструкциям своего GPS.

Идея доверять данным и алгоритмам больше, чем мы думаем, имеет свои плюсы и минусы. Очевидно, мы извлекаем выгоду из этих алгоритмов, иначе мы бы не использовали их в первую очередь. Эти алгоритмы позволяют нам автоматизировать процессы, делая обоснованные суждения, используя доступные данные. Иногда, однако, это означает замену чьей-либо работы алгоритмом, который сопровождается этическими последствиями. Кроме того, кого мы обвиняем, если что-то пойдет не так?

Наиболее часто обсуждаемый случай в сегодняшнее время – это самоуправляемые автомобили: как мы решаем, как транспортное средство должно реагировать в случае фатального столкновения? Будет ли у нас в будущем возможность выбрать этические рамки при покупке, которым следовал бы наш самоуправляемый автомобиль?

Кто виноват, если моя самоуправляемая машина кого-то убьет на дороге?

Хотя это все увлекательные вопросы, они не являются главной целью этой статьи. Однако очевидно, что машинное обучение не может сказать нам ничего о том, какие нормативные ценности мы должны принимать, то есть как мы должны действовать в данной ситуации.

Ограничение 2 — Детерминированные проблемы

Это ограничение, с которым мне лично приходилось иметь дело. Моя область знаний — наука об окружающей среде, которая в значительной степени опирается на компьютерное моделирование и использование датчиков / устройств IoT.

Машинное обучение невероятно эффективно для датчиков и может использоваться для калибровки и корректировки датчиков при подключении к другим датчикам, измеряющим переменные среды, такие как температура, давление и влажность. Корреляции между сигналами от этих датчиков могут быть использованы для разработки процедур самокалибровки, и это горячая тема исследований в моей области исследований химии атмосферы.

Однако все становится немного интереснее, когда дело доходит до компьютерного моделирования.

Запуск компьютерных моделей, которые имитируют глобальную погоду, выбросы с планеты и перенос этих выбросов, очень затратные в вычислительном отношении. На самом деле, это настолько трудоемко в вычислительном отношении, что моделирование на уровне исследований может занять несколько недель даже при работе на суперкомпьютере.

Хорошими примерами этого являются MM5 и WRF, которые представляют собой численные модели прогнозирования погоды, которые используются для исследований климата и для предоставления вам прогнозов погоды в утренних новостях. Интересно, что синоптики делают весь день? Запустите и изучите эти модели.

Работать с моделями погоды — это хорошо, но теперь, когда у нас есть машинное обучение, можем ли мы использовать его вместо этого, чтобы получать наши прогнозы погоды? Можем ли мы использовать данные со спутников, метеостанций и использовать элементарный алгоритм прогнозирования, чтобы определить, пойдет ли дождь завтра?

Ответ, на удивление, да. Если у нас есть сведения о давлении воздуха вокруг определенного региона, уровнях влажности в воздухе, скорости ветра и информации о соседних точках и их собственных переменных, то становится возможным обучать, например, нейронную сеть. Но какой ценой?

Использование нейронной сети с тысячами входов позволяет определить, будет ли завтра дождь в Бостоне. Тем не менее, использование нейронной сети пропускает всю физику погодной системы.

Машинное обучение является стохастическим, а не детерминированным.
Нейронная сеть не понимает второй закон Ньютона, или что плотность не может быть отрицательной — нет никаких физических ограничений.

Однако это не может быть ограничением надолго. Уже есть ряд исследователей, которые рассматривают добавление физических ограничений к нейронным сетям и другим алгоритмам, чтобы их можно было использовать для таких целей, как эта.

Ограничение 3 – Данные

Это самое очевидное ограничение. Если вы плохо «кормите» модель, то это даст только плохие результаты. Это может проявляться двумя причинами: нехватка данных и нехватка достоверных данных. Если у вас таких проблем нет, то вы смело можете изучать обработку больших массивов данных на Телеграм-канале «Big Data Books», где публикуются различные книги и ресурсы по Big Data.

Недостаток данных

Многие алгоритмы машинного обучения требуют больших объемов данных, прежде чем они начнут давать полезные результаты. Хорошим примером этого является нейронная сеть. Нейронные сети – это data-eating машины, которые требуют большого количества обучающих данных. Чем больше архитектура, тем больше данных требуется для получения жизнеспособных результатов. Повторное использование данных — плохая идея, всегда предпочтительнее иметь больше данных.
Если вы можете получить данные, то используйте их.

Недостаток хороших данных

Несмотря на внешний вид, это не то же самое, что написано выше. Представим, что вы думаете, что можете обмануть, сгенерировав десять тысяч фальшивых точек данных для размещения в нейронной сети. Что происходит, когда вы вставляете это?

Он будет обучаться сам, а затем, когда вы придете, чтобы проверить его на новом наборе данных, он не будет работать хорошо. У вас были данные, но качество желает лучшего.
Точно так же, как недостаток хороших признаков может привести к плохой работе вашего алгоритма, так и недостаток хороших правдивых данных может также ограничить возможности вашей модели. Ни одна компания не собирается внедрять модель машинного обучения, которая работает хуже, чем ошибка человеческого уровня.

Точно так же применение модели, обученной на наборе данных в одной ситуации, может не обязательно применяться также хорошо и ко второй ситуации. Лучший пример этого, который я нашел до сих пор, — в прогнозировании рака молочной железы.

В базах данных маммографии много изображений, но у них есть одна серьезная проблемы, которая вызвала значительные проблемы в последние годы — почти все рентгеновские снимки сделаны у белых женщин. Это может показаться не таким уж большим делом, но на самом деле было показано, что темнокожие женщины на 42 процента чаще умирают от рака молочной железы из-за широкого спектра факторов, которые могут включать различия в выявлении и доступе к медицинской помощи. Таким образом, обучение алгоритму в первую очередь для белых женщин в этом случае отрицательно влияет на темнокожих женщин.

В этом конкретном случае требуется большее количество рентгеновских снимков темнокожих пациентов в базе данных обучения, больше признаков, относящихся к причине повышения вероятности на 42 процента, и чтобы алгоритм был более справедливым за счет стратификации набора данных вдоль соответствующих осей.

Ограничение 4 — Неправильное применение

Относительно второго ограничения, обсуждавшегося ранее, предполагается, что это «кризис машинного обучения в академических исследованиях», когда люди слепо используют машинное обучение, чтобы попытаться проанализировать системы, которые являются либо детерминированными, либо стохастическими по природе.

По причинам, обсуждаемым во втором ограничении, применение машинного обучения в детерминированных системах будет успешным, но алгоритм, который не изучает отношения между двумя переменными, и не будет знать, когда он нарушает физические законы. Мы просто дали некоторые входы и выходы в систему и сказали ей изучить отношения — подобно тому, как кто-то переводит слово в слово из словаря, алгоритм будет казаться только поверхностным пониманием основной физики.

Для стохастических (случайных) систем все немного менее очевидно. Кризис машинного обучения для случайных систем проявляется двумя способами:

Источник

ПО для машинного обучения на Python

библиотеки машинного обучения ничем не ограничены. Смотреть фото библиотеки машинного обучения ничем не ограничены. Смотреть картинку библиотеки машинного обучения ничем не ограничены. Картинка про библиотеки машинного обучения ничем не ограничены. Фото библиотеки машинного обучения ничем не ограничены

Сегодня существует большое количество программных инструментов для создания моделей Machine Learning. Первые такие инструменты формировались в среде ученых и статистиков, где популярны языки R и Python, исторически сложились экосистемы для обработки, анализа и визуализации данных именно на этих языках, хотя определенные библиотеки машинного обучения есть и для Java, Lua, С++. При этом интерпретируемые языки программирования существенно медленнее компилируемых, поэтому на интерпретируемом языке описывают подготовку данных и структуру моделей, а основные вычисления проводят на компилируемом языке.

В данном посте мы расскажем преимущественно о библиотеках, имеющих реализацию на Python, поскольку этот язык обладает большим количеством пакетов для интеграции в разного рода сервисы и системы, а также для написания различных информационных систем. Материал содержит общее описание известных библиотек и будет полезен прежде всего тем, кто начинает изучать область ML и хочет примерно понимать, где искать реализации тех или иных методов.

При выборе конкретных пакетов для решения задач в первую очередь стоит определиться, заложен ли в них механизм для решения ваших проблем. Так, например, для анализа изображений, скорее всего, придется иметь дело с нейронными сетями, а для работы с текстом — с рекурентными, при небольшом количестве данных от нейросетей наверняка придется отказаться.

Библиотеки общего назначения на Python

Все описанные в данном разделе пакеты так или иначе используются при решении практически любой задачи по машинному обучению. Часто их достаточно, чтобы построить модель целиком, по крайней мере в первом приближении.

NumPy

Библиотека с открытым исходным кодом для выполнения операций линейной алгебры и численных преобразований. Как правило, такие операции необходимы для преобразования датасетов, которые можно представить в виде матрицы. В библиотеке реализовано большое количество операций для работы с многомерными массивами, преобразования Фурье и генераторы случайных чисел. Форматы хранения numpy де-факто являются стандартом для хранения числовых данных во многих других библиотеках (например, Pandas, Scikit-learn, SciPy).

Pandas

Библиотека для обработки данных. С ее помощью можно загрузить данные практически из любого источника (интеграция с основными форматами хранения данных для машинного обучения), вычислить различные функции и создать новые параметры, построение запросов к данным с помощью агрегативных функций сродни реализованным в SQL. Кроме того, имеются разнообразные функции преобразования матриц, метод скользящего окна и прочие методы для получения информации из данных.

Scikit-learn

Библиотека программного обеспечения с более чем десятилетней историей содержит реализации практически всех возможных преобразований, и нередко ее одной хватает для полной реализации модели. Как правило, при программировании практически любой модели на языке Python какие-то преобразования с использованием данной библиотеки всегда присутствуют.
Scikit-learn содержит методы разбиения датасета на тестовый и обучающий, вычисление основных метрик над наборами данных, проведение кросс-валидации. В библиотеке также есть основные алгоритмы машинного обучения: линейной регрессии (и ее модификаций Лассо, гребневой регрессии), опорных векторов, решающих деревьев и лесов и др. Есть и реализации основных методов кластеризации. Кроме того, библиотека содержит постоянно используемые исследователями методы работы с параметрами (фичами): например, понижение размерности методом главных компонент. Частью пакета является библиотека imblearn, позволяющая работать с разбалансированными выборками и генерировать новые значения.

SciPy

Довольно обширная библиотека, предназначенная для проведения научных исследований. В ее состав входит большой набор функций из математического анализа, в том числе вычисление интегралов, поиск максимума и минимума, функции обработки сигналов и изображений. Во многих отношениях данную библиотеку можно считать аналогом пакета MATLAB для разработчиков на языке Python. C ее помощью можно решать системы уравнений, использовать генетические алгоритмы, выполнять многие задачи по оптимизации.

Специфические библиотеки

В данном разделе рассмотрены библиотеки или со специфической сферой применимости, или популярные у ограниченного числа пользователей.

Tensorflow

Библиотека, разработанная корпорацией Google для работы с тензорами, используется для построения нейросетей. Поддержка вычислений на видеокартах имеет версию для языка C++. На основе данной библиотеки строятся более высокоуровневые библиотеки для работы с нейронными сетями на уровне целых слоев. Так, некоторое время назад популярная библиотека Keras стала использовать Tensorflow как основной бэкенд для вычислений вместо аналогичной библиотеки Theano. Для работы на видеокартах NVIDIA используется библиотека cuDNN. Если вы работаете с картинками (со сверточными нейросетями), скорее всего, придется использовать данную библиотеку.

Keras

Библиотека для построения нейросетей, поддерживающая основные виды слоев и структурные элементы. Поддерживает как рекуррентные, так и сверточные нейросети, имеет в своем составе реализацию известных архитектур нейросетей (например, VGG16). Некоторое время назад слои из данной библиотеки стали доступны внутри библиотеки Tensorflow. Существуют готовые функции для работы с изображениями и текстом (Embedding слов и т.д.). Интегрирована в Apache Spark с помощью дистрибутива dist-keras.

Caffe

Фреймворк для обучения нейросетей от университета Беркли. Как и TensorFlow, использует cuDNN для работы с видеокартами NVIDIA. Содержит в себе реализацию большего количества известных нейросетей, один из первых фреймворков, интегрированных в Apache Spark (CaffeOnSpark).

pyTorch

Позволяет портировать на язык Python библиотеку Torch для языка Lua. Содержит реализации алгоритмов работы с изображениями, статистических операций и инструментов работы с нейронными сетями. Отдельно можно создать набор инструментов для оптимизационных алгоритмов (в частности стохастического градиентного спуска).

Реализации градиентного бустинга над решающими деревьями

Подобные алгоритмы неизменно вызывают повышенный интерес, так как часто они показывают лучший результат, чем нейросети. Особенно это проявляется, если в вашем распоряжении не очень большие наборы данных (очень грубая оценка: тысячи и десятки тысяч, но не десятки миллионов). Среди моделей-победителей на соревновательной платформе kaggle алгоритмы градиентного бустинга над решающими деревьями встречаются довольно часто.
Как правило, реализации таких алгоритмов есть в библиотеках машинного обучения широкого профиля (например, в Scikit-learn). Однако существуют особые реализации данного алгоритма, которые часто можно встретить среди победителей различных конкурсов. Стоит выделить следующие.

Xgboost

Самая распространенная реализация градиентного бустинга. Появившись в 2014 г., уже к 2016-му она завоевала немалую популярность. Для выбора разбиения используют сортировку и модели, основанные на анализе гистограмм.

LightGBM

CatBoost

Разработка компании Яндекс, вышедшая, как и LightGBM, в 2017 г. Реализует особый подход к обработке категориальных признаков (основанный на target encoding, т.е. на подмене категориальных признаков статистиками на основе предсказываемого значения). К тому же алгоритм содержит особый подход к построению дерева, который показал лучшие результаты. Проведенное нами сравнение показало, что данный алгоритм лучше других работает прямо «из коробки», т.е. без настройки каких-либо параметров.

Microsoft Cognitive Toolkit (CNTK)

Другие ресурсы для разработки

По мере популяризации машинного обучения неоднократно появлялись проекты по упрощению разработки и приведению его в графическую форму с доступом через онлайн. В данном поле можно отметить несколько.

Azure ML

Сервис машинного обучения на платформе Microsoft Azure, в котором можно выстраивать обработку данных в виде граф и проводить вычисления на удаленных серверах, с возможностью включения кода на языке Python и на других.

IBM DataScience experience (IBM DSX)

Сервис для работы в среде Jupyter Notebook с возможностью выполнять вычисления в языке Python и на других. Поддерживает интеграцию с известными наборами данных и Spark, проектом IBM Watson.

Пакеты для социальных наук

Среди них можно выделить IBM Statistical Package for the Social Sciences (SPSS) — программный продукт IBM для обработки статистики в социальных науках, поддерживает графический интерфейс задания процесса обработки данных. Некоторое время назад стало можно встраивать алгоритмы машинного обучения в общую структуру выполнения. В целом, ограниченная поддержка алгоритмов машинного обучения становится популярной среди пакетов для статистиков, в которых уже включены статистические функции и методы визуализации (например, Tableau и SAS).

Заключение

Выбор программного пакета, на основе которого будет решаться задача, обычно определяется следующими условиями.

Построить первую модель можно, используя сравнительно небольшое число библиотек, а дальше придется принимать решение, на что тратить время: на проработку параметров (feature engineering) или на подбор оптимальной библиотеки и алгоритма, или же выполнять эти задачи параллельно.

Теперь немного о рекомендациях по выбору. Если вам нужен алгоритм, который лучше всего работает прямо «из коробки», — это Catboost. Если вы предполагаете работать с изображениями, можно использовать Keras и Tensorflow или Caffe. При работе с текстом надо определиться, собираетесь ли вы строить нейросеть и учитывать контекст. Если да, те же пожелания, что и к изображениям, если достаточно «мешка слов» (частотных характеристик встречаемости каждого слова), подойдут алгоритмы градиентного бустинга. При небольших наборах данных можно использовать алгоритмы генерации новых данных из Scikit-learn и линейные методы, реализованные в той же библиотеке.

Как правило, описанных библиотек хватает для решения большинства задач, даже для победы на соревнованиях. Область машинного обучения развивается очень быстро — мы уверены, что новые фреймворки появились уже в момент написания этого поста.

Николай Князев, руководитель группы машинного обучения «Инфосистемы Джет»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *