Как начать изучать data science
Как бы я изучал Data Science, если бы начал пару лет назад, или Руководство по эффективному изучению науки о данных
Когда я только начал своё путешествие к науке о данных, я потратил много времени на то, чтобы понять, с чего начать, что я должен узнать в первую очередь и какие ресурсы должен использовать. За последние два года я узнал несколько вещей, о которых хотел знать раньше, например о том, стоит ли сначала сосредоточиться на программировании или статистике, какие ресурсы я должен использовать для изучения новых навыков, как я должен подходить к изучению этих навыков и так далее. Таким образом, эта статья написана, чтобы дать направления и идеи для тех, кто изучает Data Science.
Оглавление:
Введение
Я предполагаю, что как начинающий дата-сайентист вы захотите полностью понять концепции и детали различных алгоритмов машинного обучения, понятия дата-сайнс и так далее.
Поэтому я рекомендую вам начать с базы, прежде чем вы даже посмотрите на алгоритмы машинного обучения или приложения для анализа данных. Если у вас нет базового понимания математического анализа и интегралов, линейной алгебры и статистики, вам будет трудно понять лежащую в основе различных алгоритмов механику. Точно так же, если у вас нет базового понимания Python, вам будет трудно воплотить свои знания в реальных приложениях. Ниже приведен порядок тем, которые я рекомендую изучить:
1. Математика и статистика
Как и во всём остальном, вы должны изучить основы, прежде чем приступать к интересным вещам. Поверьте, мне было бы гораздо легче, если бы я начал с изучения математики и статистики, прежде чем приступать к каким-то алгоритмам машинного обучения. Три общие темы, которые я рекомендую посмотреть, — это математический анализ/интегралы, статистика и линейная алгебра (без какого-то порядка).
Интегралы
Интегралы важны, когда речь заходит о распределении вероятностей и тестировании гипотез. Хотя вам не нужно быть экспертом, в ваших же интересах изучить основы интегралов. Первые две статьи предназначены для тех, кто хочет получить представление о том, что такое интегралы, или для тех, кому нужно просто освежить знания. Если вы абсолютно ничего не знаете об интегралах, я рекомендую вам пройти курс Академии Хана. Наконец, вот ссылки на ряд практических задач, чтобы отточить навыки:
Статистика
Если и есть какая-то тема, на которой вы должны сосредоточиться, то это статистика. В конце концов, дата-сайентист — это действительно современный статистик, а машинное обучение — это современный термин для статистики. Если у вас есть время, я рекомендую вам пройти курс Джорджии Тек под названием «Статистические методы», который охватывает основы вероятности, случайные величины, распределение вероятностей, тестирование гипотез и многое другое. Если у вас нет времени посвятить себя этому курсу, я настоятельно рекомендую посмотреть видео Академии Хана по статистике.
Линейная алгебра
2. Основы программирования
Точно так же, как важно фундаментальное понимание математики и статистики, фундаментальное понимание программирования сделает вашу жизнь намного проще, особенно когда речь заходит о реализации. Поэтому я рекомендую вам потратить время на изучение базовых языков — SQL и Python, прежде чем погружаться в алгоритмы машинного обучения.
Не важно, с чего начинать, но я начал бы с SQL. Почему? Его легче изучить и полезно знать, если вы заняты в компании, которая работает с данными, даже если вы не дата-сайентист.
Если вы новичок в SQL, я рекомендую ознакомиться с туториалами Mode по SQL, так как они очень лаконичны и подробны. Если же вы хотите изучить более продвинутые понятия, посмотрите список ресурсов, где вы можете изучить продвинутый SQL.
Ниже приведены несколько ресурсов, которые вы можете использовать для практики SQL:
Python
Я начинал с Python и, вероятно, останусь с этим языком до конца жизни. Он далеко впереди, с точки зрения вкладов в Open Source, и его легко изучить. Не стесняйтесь обращаться к R, если захотите, но у меня нет никаких мнений или советов относительно R. Я обнаружил, что изучение Python с помощью практики гораздо полезнее. Тем не менее, пройдя несколько краш-курсов Python, я пришёл к выводу, что этот курс наиболее полный (и при этом бесплатный!).
Pandas
Пожалуй, самая важная библиотека, которую нужно знать, — это Pandas, которая специально предназначена для манипулирования данными и их анализа. Ниже приведены два ресурса, которые должны ускорить ваше обучение. Первая ссылка — туториал о том, как использовать Рandas, а вторая ссылка содержит множество практических задач, которые вы можете решать, чтобы закрепить свои знания!
3. Алгоритмы и понятия машинного обучения
Если вы дошли до этой части статьи, это означает, что вы построили свой фундамент и готовы изучать интересные вещи. Эта часть разделена на две другие: алгоритмы машинного обучения и понятия машинного обучения.
Алгоритмы машинного обучения
Следующий шаг — изучить различные алгоритмы машинного обучения, как они работают и когда их использовать. Ниже приведён неполный список различных алгоритмов машинного обучения и ресурсов, которые вы можете использовать для изучения каждого из них.
Понятия машинного обучения
Кроме того, есть несколько фундаментальных понятий машинного обучения, которые вы также захотите изучить. Ниже приведён (не исчерпывающий) список понятий, которые я настоятельно рекомендую изучить. Многие вопросы интервью основаны на этих темах!
4. Проекты в области дата-сайнс
К этому моменту вы не только построите прочный фундамент, но и обретёте твёрдое понимание основ машинного обучения. Теперь пришло время поработать над личными сайд-проектами. Если вы хотите ознакомиться с некоторыми простыми примерами проектов дата-сайнс, посмотрите некоторые из моих проектов:
Я надеюсь, что этот пост даст вам направление и поможет в вашей карьере в области Data Science. Нет никакой серебряной пули, так что не стесняйтесь относиться к этому посту скептически, но я действительно верю, что изучение основ принесёт свои плоды в будущем. А промокод HABR — добавит 10% к скидке на обучение, отраженной на баннере.
Data Science с нуля: подробный гайд для начинающих
Можно ли погрузиться в мир данных, самостоятельно освоив Data Science с нуля? Спойлер: да. В этом материале мы вместе с Факультетом Искусственного интеллекта GeekUniversity расскажем о навыках и дисциплинах, которые необходимо освоить на пути к карьере Data Scientist.
Искусственный интеллект фокусируется на создании технологий, которые действуют и реагируют, как человеческий разум. В большинстве областей ИИ всё ещё не может полностью заменить человека.
Машинное обучение — техника, позволяющая смоделировать определённое поведение, основываясь на данных (например обучение нейронной сети, чтобы та могла отличать кошек от собак по фотографиям).
Глубокое обучение нейронных сетей — это создание многослойных нейронных сетей в областях, где требуется более продвинутый анализ, и традиционное машинное обучение с ним не справляется.
Наука о данных — сбор, визуализация и обработка данных, а также принятие решений на их основе.
Чем занимается Data Scientist?
В Data Science обучении стоит отталкиваться от задач, поставленных перед специалистом. При этом задачи Data Scientist могут отличаться в зависимости от сферы деятельности компании. Вот несколько примеров:
Но для любой из вышеперечисленных задач всегда нужно выполнять примерно одни и те же шаги:
Что нужно знать?
Несмотря на то, что знать нужно довольно много, сейчас есть огромное число онлайн-курсов и книг, которые помогут получить нужные навыки гораздо быстрее.
Статистика, математика, линейная алгебра
Вам понадобится изучить фундаментальный курс по теории вероятностей, математический анализ, линейную алгебру и математическую статистику. Математические знания важны, чтобы уметь анализировать результаты применения алгоритмов обработки данных.
Книги по теме:
Машинное обучение
Машинное обучение позволяет научить компьютеры самостоятельно принимать решения, чтобы автоматизировать выполнение определённых задач. По этой причине МО применяется во многих областях, среди которых есть и наука о данных.
Чтобы освоить Data Science с нуля, первым делом нужно изучить три основных раздела машинного обучения:
Книги по теме
Что нужно уметь?
Программировать на Python
Большим преимуществом будет знание основ программирования. Но это довольно обширная и сложная область, и чтобы немного упростить её изучение, можно сосредоточиться на одном языке. Python идеально подходит начинающим — у него относительно простой синтаксис, он многофункциональный и часто используется для обработки данных.
Книги по теме:
После того, как вы изучите основы Python, можете ознакомиться с библиотеками для Дата Сайнс.
Машинное обучение и глубокое обучение:
Обработка естественного языка:
Собирать данные
Data Mining — важный аналитический процесс, предназначенный для исследования данных. Он позволяет находить скрытые паттерны, чтобы получить ранее неизвестную полезную информацию, необходимую для принятия каких-либо решений. Сюда же входит визуализация данных — представление информации в понятном графическом виде.
Книги по теме:
Хорошая стратегия — получить базу по Data Science в онлайн-университете, а потом решать более сложные практические задачи на стажировке в компании.
Что дальше?
После того, как вы изучите основы и пройдёте всевозможные Data Science курсы, попробуйте свои силы в открытых проектах или соревнованиях, а затем начинайте искать работу.
Как вы уже поняли, изучение Data Science с нуля — это не только теория. Для практического опыта хорошо подойдёт Kaggle — веб-сайт, где постоянно проводятся соревнования по анализу данных, в которых принимают участие все желающие. Также есть много открытых наборов данных — можете анализировать их и публиковать свои результаты. Также изучайте на Kaggle работы других участников и учитесь на чужом опыте.
Чтобы подтвердить свою квалификацию, зарабатывайте баллы за участие в соревнованиях Kaggle и публикуйте свои проекты на GitHub. Главное — не прекращать обучение и получать удовольствие от того, что вы делаете.
Как самостоятельно выучиться на дата-саентиста — адаптированная подборка
Меня зовут Айра, я веду блог про математику, продукты и ML, делаю проекты в DS/ML, а также курсы по созданию ML-проектов. От своей аудитории блога и знакомых часто получаю вопросы в духе «Cтоит ли тратить деньги на тот или иной дорогой курс с codename «Стань DS за два месяца» или все же выучиться на дата-саентиста самостоятельно и бесплатно, и в таком случае, с чего начать?»
Недавно собрала ответ на этот вопрос достаточно развернуто, на мой взгляд, чтобы поделиться им с широкой аудиторией. Не все платные курсы плохие (хотя большинство — да — из-за механизмов отбора, продаж и слабой программы), но о них напишу отдельно. Мне кажется, нужно учитывать больше персонализированных параметров для того, чтобы грамотно выбирать хороший курс за деньги.
Во-первых, в список вошли бесплатные онлайн-курсы и ресурсы для самостоятельного обучения, которые проходила сама или советует профессиональное сообщество аналитиков и дата-саентистов (часто упоминающиеся в ODS.ai), где не нужно проходить какой-то отбор или быть ограниченным офлайн-посещением.
Во-вторых, конечно, это далеко не полный список онлайн-курсов, который вы можете встретить, зато в него попали лучшие курсы от сильных математических и Computer Science-школ мир и другие распространенные ресурсы среди профи из того, что я смогла отфильтровать на свой вкус.
В-третьих, начну с короткого списка, с которого, как мне кажется, стоит начинать обучение предмету, и он идет сразу же следующим абзацем.
С чего советую начать, чтобы тратить время эффективно?
Предполагая, что начинающий дата-саентист уже прошел подготовительные курсы а-ля гарвардский CS50 по основам программирования, pythontutor.ru или курс на Stepik от Института Биоинформатики, посоветую несколько шагов, которые должны стать твердой базой. Далее ссылки все полные, чтобы было легче копировать:
Зарегистрироваться в самом популярном в СНГ профессиональном slack-сообществе Open Data Science ODS.ai, вступить в как можно больше чатов, в том числе про менторство, обучение и карьеру и общаться с местными, чтобы расширить свой кругозор относительно работодателей, требований к прохождению интервью, к позиции и их различиях в разных компаниях и др, найти хороших наставников, тк. такие в сообществе есть!
Пройти вводный курс «Математика и Python для анализа данных» на Coursera — платный, недорогой и хороший. www.coursera.org/learn/mathematics-and-python
По программированию — пройти в leetcode.com все релевантные упражнения: это бесплатные или недорогие в премиальной версии в соотношении цена/качество тренажеры (в нем есть в том числе упражнения на интервью в FAANG).
Пройти mlcourse.ai — это открытый курс машинного обучения от ODS. Авторы смогли разработать курс машинного обучения с балансом между теорией и практикой, когда в лекции вы разбираете достаточно подробно математику, а затем упражняетесь сначала в блокноте, затем на Kaggle.
Для обучения решению разнообразных задач и оптимизации кода — участвовать в соревнованиях по анализу данных и машинному обучению на платформе kaggle.com.
Математика для DS/ML
Приятный курс Стэнфорда по DS «Introduction to Statistics» www.coursera.org/learn/stanford-statistics
Коротенький интерактивный курс по теории вероятностей и математической статистике «Seeing Theory» seeing-theory.brown.edu/
Хороший вводный курс по математике для анализа данных, более объёмный «Специализация Математика для анализа данных:. Можно послушать только интересную тему: дискретная математика / линейная алгебра / математический анализ / теория вероятностей. www.coursera.org/specializations/maths-for-data-analysis
Довольно подробная и читаемая книга по теорверу и матстату «Dekking, A Modern Introduction to Probability and Statistics» cis.temple.edu/
Python&SQL для DS/ML
Упомянутый выше бесплатный тренажер по Python с нуля: pythontutor.ru/
Отличный курс по инструментам по DS от IBM «Специализация Data Science Fundamentals with Python and SQL» www.coursera.org/specializations/data-science-fundamentals-python-sql
Упомянутый выше русский курс по питону и математике (платный, недорогой и хороший) «Математика и Python для анализа данных (Coursera)» www.coursera.org/learn/mathematics-and-python
Упомянутый выше https://leetcode.com/: пройти все релевантные упражнения, это бесплатные или недорогие в премиальной версии в соотношении цена/качество тренажеры (в нем есть в том числе упражнения на интервью в FAANG).
Начальные курсы по ML
Как бы этот курс не ругали из-за устаревшего языка программирования Octave (на котором пишут на Matlab), на мой вкус — это пока что самый простой и понятный курс по ML. Машинное обучение (Coursera) https://www.coursera.org/learn/machine-learning — стэнфордский курс по машинному обучению от Andrew Ng
mlcourse.ai — это открытый курс машинного обучения от ODS. Авторы смогли разработать курс машинного обучения с балансом между теорией и практикой, когда в лекции вы разбираете достаточно подробно математику, а затем упражняетесь сначала в блокноте, затем на Kaggle.
Более продвинутые курсы по ML
Если хочется погрузиться в математические доказательства методов машинного обучения, то есть прекрасные ШАДовские лекции К.В. Воронцова: плейлист «Курс «Машинное обучение» 2019” на YouTube-канале “Компьютерные науки», www.youtube.com/watc? v=SZkrxWhI5qM&list=PLJOzdkh8T5krxc4HsHbB8g8f0hu7973fK&index=2
Также хорош ежегодный гарвардский курс «Advanced Topics in Data Science CS109B». harvard-iacs.github.io/2020-CS109B/
Или курс по углубленным алгоритмам Advanced ML от ВШЭ: «Специализация Продвинутое машинное обучение» www.coursera.org/specializations/aml
Deep learning
(Мне кажется, можно пройти один курс из списка, а остальные смотреть на предмет дополнений)
Рекомендованный Стэнфордовский курс по DL «CS231n: Convolutional Neural Networks for Visual Recognition» cs231n.github.io/
Хороший курс от Университета Карнеги—Меллон «11-785 Introduction to Deep Learning» deeplearning.cs.cmu.edu/F21/index.html
Курс от MIT: «Practical Deep Learning for Coders» https://course.fast.ai/
ШАДовский курс по глубокому обучению доступен в github: «Practical_DL» github.com/yandexdataschool/Practical_DL
Бесплатные классные курсы от МФТИ: dlschool.org/
Также есть курс по DL у ODS.ai, который тоже советуют проходить в самом сообществе: «Deep Learning на пальцах» dlcourse.ai/
А еще есть курс у Samsung AI Research Center на Stepik.org stepik.org/course/50352/info
Natural Language Processing
Стэнфордовский «CS224n: Natural Language Processing with Deep Learning » web.stanford.edu/class/cs224n/
Второй курс у Samsung AI Research Center на Stepik.org https://stepik.org/course/54098/promo
Reinforcement Learning & Self-driving cars
От Deepmind «RL Course by David Silver» www.youtube.com/watc? v=2pWv7GOvuf0
Австралийский курс StarAi «Deep Reinforcement Learning Course » www.starai.io/course/
Data Engineering & MLOps
Бесплатный курс по DE от Дмитрия Аношина, дата-инженера из Microsoft, ex-Amazon: Getting start with Data Engineering and Analytics https://datalearn.ru/ (курс готовится in progress)
Соревнования
Ну, и для обучения решению разнообразных задач и оптимизации кода — участвуйте в Kaggle. https://kaggle.com/
Кроме Kaggle, есть еще несколько соревнований:
Самообучение в Data science, с нуля до Senior за два года
Хочу поделиться методами освоения Data science с нуля человеком из другой ИТ специальности. Цель: дать понять, подходит ли Вам эта специальность в принципе, и рассказать про эффективные подходы к самообучению, которые мне помогли (отдельно планирую потом детальные статьи по отдельным темам).
Отличные материалы уже существуют по большинству конкретных тем, я сам по ним учился.
Думаю, многим будут полезны «мета» материалы о том, как выбирать курсы и статьи, по которым учиться. Например, я пересмотрел десятки статей и книг, пробовал много разных он-лайн курсов, но полезной оказалась лишь малая часть всего доступного. Надеюсь, что смогу серьезно сэкономить вам время и помочь достигнуть большего, показав более эффективный путь самообучения.
И важно сказать сразу: я верю, что любой человек с аналитическими способностями и структурным мышлением может стать специалистом по машинному обучению/data science. Еще 4 года назад я сомневался, потеряв веру в свои математические способности из-за преподавателей университета. Теперь верю: основы машинного обучения и минимально необходимую математику сможет выучить любой сильно замотивированный человек.
Когда я понял, что скоро мне стукнет 30 лет, решил уйти в другую сферу и переехать из РФ. В своей сфере (1С) я был карьерно успешен, но стало ясно, что дальнейший рост очень затруднителен и требует выполнять работу, которая мне неинтересна и почти противна.
Через полгода перебора вариантов решил, что Data science мне интереснее всего.
Ещё через год имел достаточную квалификацию и прошёл собеседование на работу в Чехии (оговорка: у меня еще до этого было неплохое знание английского).
Ещё через год стал Senior Data scientist в Vodafone (мой LinkedIn).
Мне помогло то, что до этого я сформировал привычки к самообразованию, а экономность не позволила мне пойти по самому простому пути: найти онлайн курс с именитыми преподами, заплатить им много денег и довериться, что они всему научат лучше всего. В итоге я перебирал много бесплатно доступных книг и курсов (книги часто были найдены на b-ok.org). Из всех курсов и книг отбирал самые лучшие, забрасывая то, что казалось слишком теоретизированными или плохо структурированным.
На основе этих десятков книг и курсов я и сформировал то мнение, которым хочу поделить. Вероятно, существует еще более эффективный и быстрый способ научится этому всему. То, как учился я, было всего-лишь быстрее большинства платных программ, которые я видел, и заодно бесплатным (на многие лучшие англоязычные курсы всегда можно записаться бесплатно; покупал я только книги русских авторов и пару книг, которые иначе не смог найти).
Сначала надо понять, что такое Data science/машинное обучение и подойдет ли оно вам
Потому что если это просто модное слово и вы хотите получать много денег или работать в Гугл, то легче заработать на позиции маркетолога или веб-аналитика, и это тоже достаточно аналитичная работа.
Если вы человек творческий, возможно, разработка интерфейсов (фронтенд, мобильные приложения) вам подойдёт больше.
Если вы от природы аналитик и любите разбираться в данных, но программирование вас не заинтересует, а на изучение всей математики вам не хватает времени, стоит выбрать тот же самый учебный путь! Просто сделать акцент на мнее математических задачах, и не лезть в программироване сложных систем. Аналитики, знающие основы data science, тоже нужны в компаниях.
Важно, чтобы работа зажигала. Без искреннего интереса «грызть» Data science будет тяжело, потому что надо разобраться в куче нюансов, особенно если у вас нет за плечами хороших знаний в статистике, линейной алгебре и мат.анализе.
Как понять, будет ли вам интересно заниматься именно data science?
Мне кажется, что идеально эту роль выполняет книга Datasmart (выше писал сайт, на котором я нашёл её бесплатно). На русский она тоже переведена: «Много цифр. Анализ больших данных при помощи Excel, Джон Форман». Хотя, если вы хотите работать в data science, знание английского необходимо (технический английский выучить намного легче разговорного, и это будет очень полезно для любой работы в ИТ).
Эта книга показывет многие из технических методов Data science на уровне интуиции и даёт сразу достаточно детальное представление о решаемых задачах и где в бизнесе можно применить данные модели.
Если эта книга не вызовет интерес разобраться во всех указанных алгоритмах детальнее, вероятно, работа в data science не для вас.
Если книга интересн вызовет, но вам также хочется больше программировать, скорее всего, вам интересно будет стать machine learning engineer. Разница между data scientist и machine learning engineer в том, что первый должен общаться с людьми и понимать, какую задачу имеет смысл решать, а второй должен уметь состыковать программы с «искусственным интеллектом» с другими ИТ системами, мобильными телефонами или требованиями обрабатывать огромные объемы данных.
Что учить
Если вы решили, что готовы «грызть гранит науки», то в образовании специалиста data science есть два кита:
Непосредственные методы Data science, которые стоят на трёх математических черепахах: теории вероятностей и статистике, линейной алгебре и основах мат.анализа (только основах, там требуется минимум сверх школьного курса «алегбра и начало анализа»). Кстати, вся эта математика далеко не так сложна. Проблема в том, что её плохо и неинтересно объясняют во многих вузах. Позже поделюсь советами, как её можно легче освоить.
Программирование на Python (+SQL и подобные), которое позволит применить все изученные методы с помощью логичных и простых в своей сути библиотек готовых функций.
Даже примерный учебный план для изучения методов Data science требует отдельного поста. Ниже напишу чуть подробнее про Python и SQL
Английский необходим!
Принципы эффективного обучения
Программирование: что и как учить?
Что такое SQL и зачем его учить?
SQL является стандартом для получения данных в нужном виде из разных баз данных. Это тоже своеобразный язык программирования, который дополнительно к своему основному языку используют многие программисты. Большинство самых разных баз данных использует один и тот же язык с относительно небольшими вариациями.
Как учить SQL:
Наберите в Гугле «sql tutorial» и начните учиться по первой же ссылке. Если она вдруг окажется платной, выберете другую. По SQL полно качественных бесплатных курсов.
На русском языке тоже полно курсов. Выбирайте бесплатные.
На изучение достаточно всего лишь от 10 часов (общее понимание), до 20 часов (уверенное владение большей частью всего необходимого).
Почему именно Python?
У всех других языков программирования какие-либо специализированные библиотеки для машинного обучения есть только в зачаточном состоянии.
Как учить Python
Прочитать основы и пройти все упражнения с этого сайта можно за 5-40 часов, в зависимости от вашего предыдущего опыта.
После этого варианты (все эти книги есть и на русском):
Learning Python, by Mark Lutz (5 издание). Существует и на русском.
Есть много книг, которые сразу обучают использованию языка в практических задачах, но не дают полного представления о детальных возможностях языка.
Эта книга, наоборот, разбирает Python досконально. Поэтому по началу её чтение будет идти медленнее, чем аналоги. Но зато, прочтя её, вы будете способны разобраться во всём.
Я прочёл её почти целиком в поездах в метро за месяц. А потом сразу был готов писать целые программы, потому что самые основы были заложены в pythontutor.ru, а эта книга детально разжевывает всё.
В качестве практики берите, что угодно, когда дочитаете эту книгу до 32 главы, и решайте реальные примеры (кстати, главы 21-31 не надо стараться с первого раза запоминать детально. Просто пробежите глазами, чтобы вы понимали что вообще Python умеет).
Не надо эту книгу (и никакую другую) стараться вызубрить и запомнить все детали сразу. Просто позже держите её под рукой и обращайтесь к ней при необходимости.
Прочитав эту книгу, и придя на первую работу с кучей опытных коллег, я обнаружил, что некоторые вещи знаю лучше них.
Python Crash Course, by Eric Matthes
Automate the Boring Stuff with Python
Книга хороша примерами того, что можно делать с помощью Python. Рекомендую просмотреть их все, т.к. они уже похожи на реальные задачи, с которыми приходится сталкиваться на практике, в том числе специалисту по анализу данных.
Какие трудозатраты?
Путь с нуля до уровня владения Python, на котором я что-то уже мог, занял порядка 100ч. Через 200ч я уже чувствовал себя уверенно и мог работать над проектом вместе с коллегами.