Как находить arccos на окружности

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

Задание. Решите ур-ние

Задание. Запишите корни ур-ния

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

Наконец, решениями ур-ния

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

Таким образом, у ур-ния tgx = a существует очевидное решение

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

Задание. Решите ур-ние

Задание. Запишите формулу корней ур-ния

Далее рассмотрим ур-ние вида

Задание. Решите ур-ние

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Источник

Арксинус, арккосинус, арктангенс и арккотангенс – начальные сведения

Задача, обратная нахождению значения синуса, косинуса, тангенса и котангенса данного угла (числа), подразумевает нахождение угла (числа) по известным значениям тригонометрических функций. Она приводит к понятиям арксинуса, арккосинуса, арктангенса и арккотангенса числа.

В этой статье мы дадим определения арксинуса, арккосинуса, арктангенса и арккотангенса числа, введем принятые обозначения, а также приведем примеры арксинуса, арккосинуса, арктангенса и арккотангенса. В заключение упомянем про аркфункции и покажем, как арксинус, арккосинус, арктангенс и арккотангенс связаны с единичной окружностью.

Навигация по странице.

Определения, обозначения, примеры

Арксинус, арккосинус, арктангенс и арккотангенс можно определить как угол и как число. Это связано с тем, что мы определили синус, косинус, тангенс и котангенс как угла, так и числа (смотрите синус, косинус, тангенс и котангенс в тригонометрии). Остановимся на обоих подходах к определению арксинуса, арккосинуса, арктангенса и арккотангенса.

Арксинус, арккосинус, арктангенс и арккотангенс как угол

Аналогично определяются арккосинус, арктангенс и арккотангенс.

В свете введенных обозначений, определения арксинуса, арккосинуса, арктангенса и арккотангенса числа можно записать более формально:

Теперь можно привести примеры арксинуса, арккосинуса, арктангенса и арккотангенса числа.

Арксинус, арккосинус, арктангенс и арккотангенс как число

Когда мы имеем дело с синусом, косинусом, тангенсом и котангенсом угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять как угол. Если же мы начинаем говорить про синус, косинус, тангенс и котангенс числа, а не угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять уже как число.

Источник

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Для четкого понимания рассмотрим пример.

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Таблица синусов основных углов предлагает такие результаты значений углов:

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

— π 2— π 3— π 4— π 60π 6π 4π 3в г р а д у с а х— 90 °— 60 °— 45 °— 30 °0 °30 °45 °60 °a r c sin α к а к ч и с л о— π 2— π 3— π 4— π 60π 6π 4π 3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

Следуя из таблицы, находим значения арккосинуса:

π5 π 63 π 42 π 3π 2π 3π 4π 60в г р а д у с а х180 °150 °135 °120 °90 °60 °45 °30 °0 °a r c cos α к а к ч и с л оπ5 π 63 π 42 π 3π 2π 3π 4π 60

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α— 3— 1— 3 303 313
a r c t g a к а к у г о лв р а д и а н а х— π 3— π 4— π 60π 6π 4π 3
в г р а д у с а х— 60 °— 45 °— 30 °0 °30 °45 °60 °
a r c t g a к а к ч и с л о— π 3— π 4— π 60π 6π 4π 3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Нахождение значения arcsin, arccos, arctg и arcctg

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Источник

Арксинус, арккосинус, арктангенс и арккотангенс числа: основные свойства

Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса

Это свойство используется чаще всего, поэтому логичнее всего начать рассмотрение всех основных свойств именно с него. Рассмотрим, чему равны синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа.

Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа

Данное свойство следует напрямую из определения арксинуса, арккосинуса, арктангенса и арккотангенса.

sin ( a r c sin a ) = a

Доказательство для арккосинуса, арктангенса и арккотангенса строится аналогично, на базе определений этих функций. Вот несколько примеров использования данного свойства.

Пример 1. Свойства обратных тригонометрических функций

Арксинус, арккосинус, арктангенс и арккотангенс противоположных чисел

Существует связь между арксинусами, арккосинусами, арктангенсами и арккотангенсами противоположных чисел. Запишем соотношения, выражающие ее.

arcsin, arccos, arctg и arcctg противоположных чисел

Доказательство свойства арксинусов противоположных чисел завершено.

Теперь рассмотрим доказательство свойства арккосинусов противоположных чисел.

Доказательства для арктангенса и арккотангенса проводится по аналогичному принципу.

Сумма арксинуса и арккосинуса, арктангенса и арккотангенса

Данное свойство устанавливает связь соответственно между арксинусом и арккосинусам, арктангенсом и арккотангенсом. Запишем формулы для арксинуса и арккосинуса.

Сумма arcsin и arccos

Соответственно, для арктангенса и арккотангенса

Сумма arctg и arcctg

Пользуясь разобранными свойствами, можно выряжать арксинус через арккосинус, арккосинус через арксинус, арктангенс через арккотангенс и наоборот.

Пример 2. Сумма арксинуса и арккосинуса

Арксинус синуса, арккосинус косинуса, арктангенс тангенса и арккотангенс котангенса

Запишем соотношения, иллюстрирующие свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.

Свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса

Аналогично, соблюдение условий обязательно для арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.

К примеру, запись a r c sin ( sin 8 π 3 ) = 8 π 3 будет ошибочной, так как число 8 π 3 не удовлетворяет условиям неравенства.

Описанные в этой статье свойства позволяют получить ряд полезных формул, определяющих связи между основными и обратными тригонометрическими функциями. Соотношениям, связывающим sin, cos, tg, ctg, arcsin, arccos, arctg и arcctg будет посвящена отдельная статья.

Источник

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса.

Эта статья про нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса данного числа. Сначала мы внесем ясность, что называется значением арксинуса, арккосинуса, арктангенса и арккотангенса. Дальше получим основные значения этих аркфункций, после чего разберемся, как находятся значения арксинуса, арккосинуса, арктангенса и арккотангенса по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса. Наконец, поговорим про нахождение арксинуса числа, когда известен арккосинус, арктангенс или арккотангенс этого числа, и т.п.

Навигация по странице.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Сначала стоит разобраться, что вообще такое «значение арксинуса, арккосинуса, арктангенса и арккотангенса».

Для этого обратимся к определениям арксинуса, арккосинуса, арктангенса и арккотангенса числа. Если под арксинусом, арккосинусом, арктангенсом и арккотангенсом числа a понимать угол, то значением арксинуса, арккосинуса, арктангенса и арккотангенса числа a логично считать величину этого угла. Если под арксинусом, арккосинусом, арктангенсом и арккотангенсом числа a понимать число, то оно и является значением соответствующей аркфункции.

Чтобы окончательно все стало понятно, приведем пример.

Основные значения arcsin, arccos, arctg и arcctg

Из таблицы синусов основных углов мы можем извлечь следующие результаты:
Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Для удобства запишем основные значения арксинуса в таблицу. Основные значения арксинуса (как и приведенные ниже значения арккосинуса, арктангенса и арккотангенса) желательно выучить наизусть, так как с ними придется часто встречаться при решении примеров и задач.

Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Чтобы получить основные значения арккосинуса, обратимся к таблице косинусов основных углов. Из нее находим, что
Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Отсюда получаем такие значения арккосинуса:
Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Вот соответствующая таблица арккосинусов.

Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Аналогично находятся основные значения арктангенса и арккотангенса. Также занесем их в таблицы арктангенсов и арккотангенсов.

Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности Как находить arccos на окружности. Смотреть фото Как находить arccos на окружности. Смотреть картинку Как находить arccos на окружности. Картинка про Как находить arccos на окружности. Фото Как находить arccos на окружности

Нахождение значений arcsin, arccos, arctg и arcctg по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Разберемся с нахождением значений арксинуса, арккосинуса, арктангенса и арккотангенса по таблицам Брадиса. Будем это делать на примерах.

Абсолютно аналогично находятся и значения арккосинуса, и значения арктангенса и значения арккотангенса (при этом, конечно, используются таблицы косинусов, тангенсов и котангенсов соответственно).

Нахождение значения arcsin через arccos, arctg, arcctg и т.п.

Задача нахождения значения арксинуса числа через известный арккосинус этого числа, арккосинуса через известный арксинус, арктангенса через арккотангенс и арккотангенса через известный арктангенс решается очень просто – достаточно использовать формулы arcsin a+arccos a=π/2 и arctg a+arcctg a=π/2 (смотрите формулы суммы арксинуса и арккосинуса, суммы арктангенса и арккотангенса).

Куда интереснее обстоит дело, когда по известному значению арксинуса или арккосинуса числа a требуется найти значение арктангенса или арккотангенса этого числа a или наоборот. Формул, задающих такие связи, мы, к сожалению, не знаем. Как же быть? Разберемся с этим на примере.

Эту тему логически продолжает материал статьи вычисление значений выражений, содержащих arcsin, arccos, arctg и arcctg.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *