Как находить область определения арксинуса

Область определения функции

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие области определения функции

Впервые школьники знакомятся с термином «функция» на алгебре в 7 классе, и с каждой четвертью, с каждой новой темой это понятие раскрывается с новых сторон. И, конечно же, усложняются задачки. Сейчас дадим определения ключевым словам и будем находить область определения функции заданной формулой и по графику.

Если каждому значению x из некоторого множества соответствует число y, значит, на этом множестве задана функция. При этом х называют независимой переменной или аргументом, а у — зависимой переменной или функцией.

Зависимость переменной у от переменной х называют функциональной зависимостью. Записывают так: y = f(x).

Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества.

Из понятия функции сформулируем определение области определения функции.

Область определения функции — это множество всех значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох. Чтобы обозначить область определения некоторой функции y, используют запись D(y).

Множество значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.

Материал со звездочкой

Старшеклассникам нужно помнить, что у некоторых функций есть собственные обозначения. Например, у тригонометрических. Поэтому в учебниках можно встретить такие записи: D(sin) — область определения функции синус, D(arcsin) — область определения функции арксинус.

Можно также записать D(f), где f — функция синуса или арксинуса. Если функция f определена на множестве значений x, то можно использовать формулировку D(f) = X. Так, например, для того же арксинуса запись будет выглядеть так: D (arcsin) = [-1, 1].

Область определения можно описывать словами, но часто ответ получается громоздким. Поэтому используют специальные обозначения.

Если мы хотим указать на множество чисел, которые лежат в некотором промежутке, то делаем так:

Например, все действительные числа от 2 до 5 включительно можно записать так:

Все положительные числа можно описать так:

Ноль не положительное число, поэтому скобка возле него круглая.

Области определения основных элементарных функций

Область определения функции — неотъемлемая часть самой функции. Когда мы вводим какую-либо функцию, то сразу указываем ее область определения.

На уроках алгебры мы последовательно знакомимся с каждой функцией: прямая пропорциональность, линейная функция, функция y = x2 и другие. А области их определения изучаем, как свойства.

Рассмотрим области определения основных элементарных функций.

Область определения постоянной функции

Постоянная функция задается формулой y = C, то есть f(x) = C, где C — некоторое действительное число. Ее еще называют константа.

Смысл функции — в том, что каждому значению аргумента соответствует значение функции, которое равно C. Поэтому, область определения этой функции — множество всех действительных чисел R.

Еще больше наглядных примеров и практики — на курсах по математике в онлайн-школе Skysmart!

Область определения функции с корнем

Функцию с корнем можно определить так: y = n √x, где n — натуральное число больше единицы.

Рассмотрим две вариации такой функции.

Область определения корня зависит от четности или нечетности показателя:

Значит, область определения каждой из функций y = √x, y = 4 √x, y = 6 √x,… есть числовое множество [0, +∞). А область определения функций y = 3 √x, y = 5 √x, y = 7 √x,… — множество (−∞, +∞).

Пример

Найти область определения функции: Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Подкоренное выражение должно быть неотрицательным, но поскольку оно стоит в знаменателе, то равняться нулю не может. Следовательно, для нахождения области определения необходимо решить неравенство x 2 + 4x + 3 > 0.

Для этого решим квадратное уравнение x 2 + 4x + 3 = 0. Находим дискриминант:

Дискриминант положительный. Ищем корни:

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Значит парабола f(x) = x 2 + 4x + 3 пересекает ось абсцисс в двух точках. Часть параболы расположена ниже оси (неравенство x 2 + 4x + 3 2 + 4x + 3 > 0).

Область определения степенной функции

Область определения степенной функции зависит от значения показателя степени.

Перечислим возможные случаи:

Рассмотрим несколько примеров.

Область определения показательной функции

Область определения показательной функции — это множество R.

Примеры показательных функций:

Область определения каждой из них (−∞, +∞).

Область определения логарифмической функции

Логарифмическая функция выглядит так: y = logax, где где число a > 0 и a ≠ 1. Она определена на множестве всех положительных действительных чисел.

Область определения логарифмической функции или область определения логарифма — это множество всех положительных действительных чисел. То есть, D (loga) = (0, +∞).
Например:

Рассмотрим примеры логарифмических функций:

Область определения этих функций есть множество (0, +∞).

Пример

Укажите, какова область определения функции: Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Составим и решим систему:

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Область определения тригонометрических функций

Сначала вспомним, как задавать тригонометрические функции и как увидеть их области определения.

Поэтому, если x — аргумент функций тангенс и котангенс, то области определения тангенса и котангенса состоят из всех таких чисел x, что Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинусаи x ∈ r, x ≠ πk, k ∈ Z соответственно.

Пример

Найдите область определения функции f(x) = tg2x.

Так как a(x) = 2x, то в область определения не войдут следующие точки:

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Перенесем 2 из левой части в знаменатель правой части:

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

В результате Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса. Отразим графически:

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Ответ: область определения: Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса.

Область определения обратных тригонометрических функций

Вспомним обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс.

Область определения арктангенса и арккотангенса — все множество действительных чисел R. То есть, D(arctg) = R и D(arcctg) = R.

Таблица областей определения функций

Области определения основных функций в табличном виде можно распечатать и использовать на уроках, чтобы быстрее решать задачки.

И, помните: чем чаще вы практикуетесь в решении задач — тем быстрее все запомните.

Функция

Область определения функции

Источник

Область определения функции

Каждая функция имеет свою собственную область определения. Целью этого материала является объяснение этого понятия и описание способов ее вычисления. Сначала мы введем основное определение, а потом на конкретных примерах покажем, как выглядит область определения основных элементарных функций (степенной, постоянной и др.) Разбирать случаи с более сложными функциями мы пока не будем.

В рамках данной статьи мы рассмотрим область определения функций, включающих в себя только одну переменную.

Понятие и обозначение области определения функции

Самое простое определение этого понятия дается в учебниках тогда, когда впервые вводится понятие функции как таковой. На этом этапе термином «область определения» обозначают множество всех возможных значений аргумента.

По мере углубления знаний о функциях определение сужается и усложняется. Так, в одном из учебников можно встретить следующую формулировку:

Используя это определение, охарактеризуем нужное нам понятие более четко:

Областью определения функции называется множество значений аргумента, на котором можно задать эту функцию.

Как найти области определения для основных элементарных функций

Прочитав определения выше, легко понять, что понятие области определения очень важно для любой функции. Это ее неотъемлемая часть, которую задают вместе с самой функцией. То есть когда мы вводим какую-либо функцию, то мы сразу указываем и область ее определения. Обычно в рамках школьного курса основные функции изучаются последовательно: сначала прямые пропорциональности, затем линейные функции, потом y = x 2 и т.д., а их области определения указываются в качестве основных свойств.

В этом пункте мы расскажем, какие области определения имеют основные элементарные функции.

Область определения постоянной функции

Область определения функции с корнем

Область определения таких функций будет зависеть от того, является ли показатель четным или нечетным числом.

Область определения степенной функции

Перечислим возможные варианты.

Поясним нашу мысль несколькими примерами.

Область определения показательной функции

Область определения логарифмической функции

Область определения тригонометрических функций

Чтобы узнать, на каком промежутке будут определены тригонометрические функции, нужно вспомнить, как именно они задаются и как называются.

Область определения тригонометрических функций

К обратным тригонометрическим относятся функции арксинуса, арккосинуса, арктангенса и арккотангенса.

Области определения основных функций в табличном виде

Чтобы запомнить или легко найти нужные нам области, правила вычисления которых мы объяснили выше, представим всю информацию в табличном виде. Не лишним будет оформить ее на отдельном листе и держать под рукой, так же, как и таблицу простых чисел, квадратов и др. Она очень пригодится при работе с функциями, пока вы не выучите ее содержимое наизусть.

y = sin x y = cos x y = t g x y = c t g x

y = a r c sin x y = a r c cos x y = a r c t g x y = a r c c t g x

Подводя итоги статьи, следует отметить, что в рамках школьного курса изучаются не только основные элементарные функции, но и их различные сочетания. Задачи такого типа встречаются очень часто. Области определения таких комбинированных функций указываются далеко не всегда. Авторы задач подразумевают, что в таких случаях областью определения функции можно считать множество таких значений аргумента, при которых она будет иметь смысл. Это позволяет нам приблизиться к ответу на вопрос, как именно вычисляется область определения функции в подобных случаях.

Источник

Как найти область определения функции?

Что значит найти область определения

После того, как функция задается, указывается ее область определения. Иначе говоря, без области определения функция не рассматривается. При задании функции вида y = f ( x ) область определения не указывается, так как ее ОДЗ для переменной x будет любым. Таким образом, функция определена на всей области определения.

Ограничение области определения

Правила нахождения области определения

При подготовке ЕГЭ и ОГЭ можно встретить множество комбинированных заданий для функций, где необходимо в первую очередь обращать внимание на ОДЗ. Только после его определения можно приступать к дальнейшему решению.

Область определения суммы, разности и произведения функций

Перед началом решения необходимо научиться правильно определять область определения суммы функций. Для этого нужно, чтобы имело место следующее утверждение:

Поэтому при решении рекомендуется использование фигурной скобки при записи условий, так как это является удобным способом для понимания перечисления числовых множеств.

Найти область определения функции вида y = x 7 + x + 5 + t g x .

Для нахождения области определения произведения функций необходимо применять правило:

Ответ: область определения y = 3 · a r c t g x · ln x – множество всех действительных чисел.

Необходимо рассмотреть как разность двух функций f 1 и f 2 .

Для нахождения области определения функции y = log 3 x − 3 · 2 x получим, что

Область определения сложной функции

Видно, что область определения сложной функции вида y = f 1 ( f 2 ( x ) ) находится на пересечении двух множеств таких, где x ∈ D ( f 2 ) и f 2 ( x ) ∈ D ( f 1 ) . В стандартном обозначении это примет вид

x ∈ D ( f 2 ) f 2 ( x ) ∈ D ( f 1 )

Рассмотрим решение нескольких примеров.

Тогда получим систему неравенств вида

Искомая область определения найдена. Вся ось действительных чисел кроме нуля является областью определения.

Преобразуем систему вида

Заданная функция может быть расписана, как y = f 1 ( f 2 ( f 3 ( x ) ) ) , где имеем f 1 – функция синуса, f 2 – функция с корнем 4 степени, f 3 – логарифмическая функция.

При решении примеров были взяты функции, которые были составлены при помощи элементарных функций, чтобы детально рассмотреть область определения.

Область определения дроби

x ∈ D ( f 1 ) x ∈ D ( f 2 ) f 2 ( x ) ≠ 0

Область определения логарифма с переменной в основании

x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 f 2 ( x ) ≠ 1

А аналогичному заключению можно прийти, когда функцию можно изобразить в таком виде:

x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 log a f 2 ( x ) ≠ 0 = x ∈ D ( f 1 ) f 1 ( x ) > 0 x ∈ D ( f 2 ) f 2 ( x ) > 0 f 2 ( x ) ≠ 1

Область определения показательно-степенной функции

В общем случае

Для решения обязательным образом необходимо искать область определения, которая может быть представлена в виде суммы или разности функций, их произведений. Области определения сложных и дробных функций нередко вызывают сложность. Благодаря выше указанным правилам можно правильно определять ОДЗ и быстро решать задание на области определения.

Таблицы основных результатов

Весь изученный материал поместим для удобства в таблицу для удобного расположения и быстрого запоминания.Ф

Сумма, разность, произведение функций

Расположим функции и их области определения.

Прямая пропорциональность y = k · x

Обратная пропорциональность y = k x

Дробная y = f 1 ( x ) f 2 ( x )

y = log f 2 ( x ) f 1 ( x )

В частности, y = log a f 1 ( x )

В частности, y = log f 2 ( x ) a

Источник

Обратные тригонометрические функции и их графики

Обратные тригонометрические функции — это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Расскажем подробно об этих четырех новых для нас функциях — обратных тригонометрических.

Например, арифметический квадратный корень из числа а — такое неотрицательное число, квадрат которого равен а.

Логарифм числа b по основанию a — такое число с, что

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения — это и Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: Решение этого уравнения — иррациональное число Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна И ясно, что это не табличное значение синуса. Как же записать решения?

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

А вторая серия решений нашего уравнения — это

Подробнее о решении тригонометрических уравнений — здесь.

Повторим определение еще раз:

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Мы готовы построить график функции

Как обычно, отмечаем значения х по горизонтальной оси, а значения у — по вертикальной.

Значит, областью определения функции y = arcsin x является отрезок

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями и

Как всегда при построении графика незнакомой функции, начнем с таблицы.

Строим график функции

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

1. Область определения

2. Область значений

Напомним, что графики взаимно обратных функций симметричны относительно прямой

Аналогично, определим функцию Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок

Арккосинусом числа a называется число , такое, что

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке

Обозначение: Область определения арккосинуса — отрезок Область значений — отрезок

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение:

Построим график функции

Заполним таблицу, пользуясь определением арккосинуса.

Вот график арккосинуса:

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

1. Область определения

2. Область значений

Эта функция общего вида — она не является ни четной, ни нечетной.

5. Функции и являются взаимно обратными.

Следующие — арктангенс и арккотангенс.

Арктангенсом числа a называется число , такое, что

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Дальше рассуждаем так же, как при построении графиков арксинуса и арккосинуса.

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала значение тангенса стремится к бесконечности? — Очевидно, это

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте

На рисунке — график функции

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

1. Область определения

2. Область значений

3. Функция нечетная.

4. Функция является строго возрастающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными — конечно, когда функция рассматривается на промежутке

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число , такое, что

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

1. Область определения

2. Область значений

4. Функция является строго убывающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными, если рассматривать на промежутке

Источник

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Для четкого понимания рассмотрим пример.

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Таблица синусов основных углов предлагает такие результаты значений углов:

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

Области определения функций
ФункицяЕе область определения
Постоянная y = CR
Корень y = x n— π 2— π 3— π 4— π 60π 6π 4π 3
в г р а д у с а х— 90 °— 60 °— 45 °— 30 °0 °30 °45 °60 °
a r c sin α к а к ч и с л о— π 2— π 3— π 4— π 60π 6π 4π 3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

Следуя из таблицы, находим значения арккосинуса:

π5 π 63 π 42 π 3π 2π 3π 4π 60в г р а д у с а х180 °150 °135 °120 °90 °60 °45 °30 °0 °a r c cos α к а к ч и с л оπ5 π 63 π 42 π 3π 2π 3π 4π 60

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α— 3— 1— 3 303 313
a r c t g a к а к у г о лв р а д и а н а х— π 3— π 4— π 60π 6π 4π 3
в г р а д у с а х— 60 °— 45 °— 30 °0 °30 °45 °60 °
a r c t g a к а к ч и с л о— π 3— π 4— π 60π 6π 4π 3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Нахождение значения arcsin, arccos, arctg и arcctg

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Как находить область определения арксинуса. Смотреть фото Как находить область определения арксинуса. Смотреть картинку Как находить область определения арксинуса. Картинка про Как находить область определения арксинуса. Фото Как находить область определения арксинуса

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *