Как находить площадь поверхности многогранника

Как находить площадь поверхности многогранника

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 2, 3, 1 и двух площадей прямоугольников со сторонами 2, 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Почему вы вычитаете только 2 площади прямоугольников? их же там 4,верхняя и боковая еще. Поэтому площадь многогранника будет 15

Обратите внимание, что верхняя и боковая «достраиваются» до целого параллелепипеда из исходной фигуры.

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 3, 5 и двух площадей квадратов со стороной 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 4, 5 и площади двух квадратов со стороной 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

От площади параллелепипеда следует отнять площадь маленького параллелепипеда (5*2+2*1)

Александра, так надо поступать с объемами. С площадями иначе.

Боковая поверхность не изменилась по площади, она просто поменяла форму. А вот от оснований по маленькому квадрату «оттяпали»

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Приведем другое решение.

Найдем площадь поверхности многогранника как сумму площадей его граней: горизонтальных, боковых и фронтальных (расположенных спереди и сзади). Рассмотрим горизонтальные грани. Площадь нижней грани равна 5 · 5 = 25. Есть также две верхние грани. Если посмотреть на многогранник сверху, то эти две верхние грани сольются в одну, равную нижней грани. Таким образом, сумма их площадей равна площади нижней грани, то есть 25.

Рассмотрим боковые грани. Площадь левой грани равна 5 · 3 = 15. Есть также две грани справа. Если посмотреть на многогранник справа, то эти две грани сольются в одну, равную левой грани. Таким образом, сумма их площадей равна площади левой грани, то есть 15.

Рассмотрим фронтальные грани. Площадь задней грани равна 5 · 3 = 15. Две передние грани в сумме равны задней грани, таким образом, сумма их площадей тоже равна 15.

Следовательно, площадь поверхности многогранника равна

2 · 25 (горизонтальные грани) + 2 · 15 (боковые грани) + 2 · 15 (фронтальные грани) = 110.

Заметим, что площадь поверхности данного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5. Именно так решена эта задача первым способом.

Источник

Как находить площадь поверхности многогранника

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 2, 3, 1 и двух площадей прямоугольников со сторонами 2, 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Почему вы вычитаете только 2 площади прямоугольников? их же там 4,верхняя и боковая еще. Поэтому площадь многогранника будет 15

Обратите внимание, что верхняя и боковая «достраиваются» до целого параллелепипеда из исходной фигуры.

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 3, 5 и двух площадей квадратов со стороной 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 4, 5 и площади двух квадратов со стороной 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

От площади параллелепипеда следует отнять площадь маленького параллелепипеда (5*2+2*1)

Александра, так надо поступать с объемами. С площадями иначе.

Боковая поверхность не изменилась по площади, она просто поменяла форму. А вот от оснований по маленькому квадрату «оттяпали»

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Приведем другое решение.

Найдем площадь поверхности многогранника как сумму площадей его граней: горизонтальных, боковых и фронтальных (расположенных спереди и сзади). Рассмотрим горизонтальные грани. Площадь нижней грани равна 5 · 5 = 25. Есть также две верхние грани. Если посмотреть на многогранник сверху, то эти две верхние грани сольются в одну, равную нижней грани. Таким образом, сумма их площадей равна площади нижней грани, то есть 25.

Рассмотрим боковые грани. Площадь левой грани равна 5 · 3 = 15. Есть также две грани справа. Если посмотреть на многогранник справа, то эти две грани сольются в одну, равную левой грани. Таким образом, сумма их площадей равна площади левой грани, то есть 15.

Рассмотрим фронтальные грани. Площадь задней грани равна 5 · 3 = 15. Две передние грани в сумме равны задней грани, таким образом, сумма их площадей тоже равна 15.

Следовательно, площадь поверхности многогранника равна

2 · 25 (горизонтальные грани) + 2 · 15 (боковые грани) + 2 · 15 (фронтальные грани) = 110.

Заметим, что площадь поверхности данного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5. Именно так решена эта задача первым способом.

Источник

Как находить площадь поверхности многогранника

Площадь поверхности тетраэдра равна 12. Найдите площадь поверхности многогранника, вершинами которого являются середины рёбер данного тетраэдра.

Искомая поверхность состоит из четырёх пар равных треугольников, каждый из которых имеет площадь равную с четверти площади грани исходного тетраэдра. Поэтому искомая площадь равна половине площади поверхности тетраэдра и равна 6.

Площадь поверхности тетраэдра равна 1,2. Найдите площадь поверхности многогранника, вершинами которого являются середины сторон данного тетраэдра.

Искомая поверхность состоит из восьми равносторонних треугольников со стороной, вдвое меньшей ребра исходного тетраэдра. Поверхность исходного тетраэдра состоит из 16-ти таких треугольников (см. рис.). Поэтому искомая площадь равна половине площади поверхности тетраэдра и равна 0,6.

Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.

Площадь поверхности получившегося многогранника равна сумме площадей поверхностей куба с ребром 1 и четырех граней параллелепипеда с ребрами 1, 0,5, 0,5, уменьшенной на две площади основания вырезанной призмы:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.

Площадь поверхности получившегося многогранника равна сумме площадей поверхностей куба с ребром 1 и четырех граней параллелепипеда с ребрами 1, 0,5, 0,5, уменьшенной на две площади основания вырезанной призмы:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Из единичного куба вырезана правильная четырёхугольная призма со стороной основания 0,8 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба

Площадь поверхности получившегося многогранника равна сумме площадей поверхностей куба с ребром 1 и четырех граней параллелепипеда с ребрами 1, 0,8, 0,8, уменьшенной на две площади основания вырезанной призмы:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Приведем другое решение.

Найдем площадь поверхности многогранника как сумму площадей его граней: горизонтальных, боковых и фронтальных (расположенных спереди и сзади). Рассмотрим горизонтальные грани. Площадь нижней грани равна 5 · 5 = 25. Есть также две верхние грани. Если посмотреть на многогранник сверху, то эти две верхние грани сольются в одну, равную нижней грани. Таким образом, сумма их площадей равна площади нижней грани, то есть 25.

Рассмотрим боковые грани. Площадь левой грани равна 5 · 3 = 15. Есть также две грани справа. Если посмотреть на многогранник справа, то эти две грани сольются в одну, равную левой грани. Таким образом, сумма их площадей равна площади левой грани, то есть 15.

Рассмотрим фронтальные грани. Площадь задней грани равна 5 · 3 = 15. Две передние грани в сумме равны задней грани, таким образом, сумма их площадей тоже равна 15.

Следовательно, площадь поверхности многогранника равна

2 · 25 (горизонтальные грани) + 2 · 15 (боковые грани) + 2 · 15 (фронтальные грани) = 110.

Заметим, что площадь поверхности данного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5. Именно так решена эта задача первым способом.

Источник

Как находить площадь поверхности многогранника

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 2, 3, 1 и двух площадей прямоугольников со сторонами 2, 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Почему вы вычитаете только 2 площади прямоугольников? их же там 4,верхняя и боковая еще. Поэтому площадь многогранника будет 15

Обратите внимание, что верхняя и боковая «достраиваются» до целого параллелепипеда из исходной фигуры.

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 3, 5 и двух площадей квадратов со стороной 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 4, 5 и площади двух квадратов со стороной 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

От площади параллелепипеда следует отнять площадь маленького параллелепипеда (5*2+2*1)

Александра, так надо поступать с объемами. С площадями иначе.

Боковая поверхность не изменилась по площади, она просто поменяла форму. А вот от оснований по маленькому квадрату «оттяпали»

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Приведем другое решение.

Найдем площадь поверхности многогранника как сумму площадей его граней: горизонтальных, боковых и фронтальных (расположенных спереди и сзади). Рассмотрим горизонтальные грани. Площадь нижней грани равна 5 · 5 = 25. Есть также две верхние грани. Если посмотреть на многогранник сверху, то эти две верхние грани сольются в одну, равную нижней грани. Таким образом, сумма их площадей равна площади нижней грани, то есть 25.

Рассмотрим боковые грани. Площадь левой грани равна 5 · 3 = 15. Есть также две грани справа. Если посмотреть на многогранник справа, то эти две грани сольются в одну, равную левой грани. Таким образом, сумма их площадей равна площади левой грани, то есть 15.

Рассмотрим фронтальные грани. Площадь задней грани равна 5 · 3 = 15. Две передние грани в сумме равны задней грани, таким образом, сумма их площадей тоже равна 15.

Следовательно, площадь поверхности многогранника равна

2 · 25 (горизонтальные грани) + 2 · 15 (боковые грани) + 2 · 15 (фронтальные грани) = 110.

Заметим, что площадь поверхности данного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5. Именно так решена эта задача первым способом.

Источник

Как находить площадь поверхности многогранника

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 2, 3, 1 и двух площадей прямоугольников со сторонами 2, 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Почему вы вычитаете только 2 площади прямоугольников? их же там 4,верхняя и боковая еще. Поэтому площадь многогранника будет 15

Обратите внимание, что верхняя и боковая «достраиваются» до целого параллелепипеда из исходной фигуры.

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 3, 5 и двух площадей квадратов со стороной 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 4, 5 и площади двух квадратов со стороной 1:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

От площади параллелепипеда следует отнять площадь маленького параллелепипеда (5*2+2*1)

Александра, так надо поступать с объемами. С площадями иначе.

Боковая поверхность не изменилась по площади, она просто поменяла форму. А вот от оснований по маленькому квадрату «оттяпали»

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5:

Как находить площадь поверхности многогранника. Смотреть фото Как находить площадь поверхности многогранника. Смотреть картинку Как находить площадь поверхности многогранника. Картинка про Как находить площадь поверхности многогранника. Фото Как находить площадь поверхности многогранника

Приведем другое решение.

Найдем площадь поверхности многогранника как сумму площадей его граней: горизонтальных, боковых и фронтальных (расположенных спереди и сзади). Рассмотрим горизонтальные грани. Площадь нижней грани равна 5 · 5 = 25. Есть также две верхние грани. Если посмотреть на многогранник сверху, то эти две верхние грани сольются в одну, равную нижней грани. Таким образом, сумма их площадей равна площади нижней грани, то есть 25.

Рассмотрим боковые грани. Площадь левой грани равна 5 · 3 = 15. Есть также две грани справа. Если посмотреть на многогранник справа, то эти две грани сольются в одну, равную левой грани. Таким образом, сумма их площадей равна площади левой грани, то есть 15.

Рассмотрим фронтальные грани. Площадь задней грани равна 5 · 3 = 15. Две передние грани в сумме равны задней грани, таким образом, сумма их площадей тоже равна 15.

Следовательно, площадь поверхности многогранника равна

2 · 25 (горизонтальные грани) + 2 · 15 (боковые грани) + 2 · 15 (фронтальные грани) = 110.

Заметим, что площадь поверхности данного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5. Именно так решена эта задача первым способом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *