Как находить размах в алгебре

Как находить размах в алгебре

Калькулятор вычислит среднее арифметическое чисел, а также размах ряда чисел, моду ряда чисел, медиану ряда. Для вычисления укажите количество чисел, добавьте числа и нажмите рассчитать.

Среднее арифметическое, размах, мода и медиана

Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.

Для ряда a1,a1. an среднее арифметическое вычисляется по формуле:

Найдем среднее арифметическое для чисел 5,24, 6,97, 8,56, 7,32 и 6,23.

Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.

Размах ряда 5,24, 6,97, 8,56, 7,32, 6,23 равен 8,56-5,24=3.32

Модой ряда чисел называется число, которое встречается в данном ряду чаще других.

Ряд чисел может иметь более одной моды, а может не иметь моды совсем.

Модой ряда 32, 26, 18, 26, 15, 21, 26 является число 26, встречается 3 раза.

В ряду чисел 5,24, 6,97, 8,56, 7,32 и 6,23 моды нет.

Ряд 1, 1, 2, 2, 3 содержит 2 моды: 1 и 2.

Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.

Медиана ряда 4, 1, 2, 3, 3, 1 равна 2.5.

Примеры

Рассмотрим примеры нахождения среднего арифметического чисел, а также размаха, медианы и моды ряда.

Источник

Элементы статистики

Продолжаем изучать элементарные задачи по математике. Сегодня мы поговорим о статистике.

Статистика — это раздел математики в котором изучаются вопросы сбора, измерения и анализа информации, представленной в числовой форме. Происходит слово статистика от латинского слова status (состояние или положение дел).

Так, с помощью статистики мы можем узнать свое положение дел, касающихся финансов. С начала месяца можно вести дневник расходов и по окончании месяца, воспользовавшись статистикой, узнать сколько денег в среднем мы тратили каждый день или какая потраченная сумма была наибольшей в этом месяце либо узнать какую сумму мы тратили наиболее часто.

На основе этой информации можно провести анализ и сделать определенные выводы: следует ли в следующем месяце немного сбавить аппетит, чтобы тратить меньше денег, либо наоборот позволить себе не только хлеб с водой, но и колбасу.

Выборка. Объем. Размах

Что такое выборка? Если говорить простым языком, то это отобранная нами информация для исследования. Например, мы можем сформировать следующую выборку — суммы денег, потраченных в каждый из шести дней. Давайте нарисуем таблицу в которую занесем расходы за шесть дней

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Выборка состоит из n-элементов. Вместо переменной n может стоять любое число. У нас имеется шесть элементов, поэтому переменная n равна 6

Элементы выборки обозначаются с помощью переменных с индексами Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре. Последний Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебреэлемент является шестым элементом выборки, поэтому вместо n будет стоять число 6.

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Обозначим элементы нашей выборки через переменные Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Количество элементов выборки называют объемом выборки. В нашем случае объем равен шести.

Размахом выборки называют разницу между самым большим и маленьким элементом выборки.

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Среднее арифметическое

Понятие среднего значения часто используется в повседневной жизни.

Речь идет о среднем арифметическом — результате деления суммы элементов выборки на их количество.

Среднее арифметическое — это результат деления суммы элементов выборки на их количество.

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Вернемся к нашему примеру

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Узнаем сколько в среднем мы тратили в каждом из шести дней:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Средняя скорость движения

При изучении задач на движение мы определяли скорость движения следующим образом: делили пройденное расстояние на время. Но тогда подразумевалось, что тело движется с постоянной скоростью, которая не менялась на протяжении всего пути.

В реальности, это происходит довольно редко или не происходит совсем. Тело, как правило, движется с различной скоростью.

Когда мы ездим на автомобиле или велосипеде, наша скорость часто меняется. Когда впереди нас помехи, нам приходиться сбавлять скорость. Когда же трасса свободна, мы ускоряемся. При этом за время нашего ускорения скорость изменяется несколько раз.

Речь идет о средней скорости движения. Чтобы её определить нужно сложить скорости движения, которые были в каждом часе/минуте/секунде и результат разделить на время движения.

Задача 1. Автомобиль первые 3 часа двигался со скоростью 66,2 км/ч, а следующие 2 часа — со скоростью 78,4 км/ч. С какой средней скоростью он ехал?

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Сложим скорости, которые были у автомобиля в каждом часе и разделим на время движения (5ч)

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Значит автомобиль ехал со средней скоростью 71,08 км/ч.

Определять среднюю скорость можно и по другому — сначала найти расстояния, пройденные с одной скоростью, затем сложить эти расстояния и результат разделить на время. На рисунке видно, что первые три часа скорость у автомобиля не менялась. Тогда можно найти расстояние, пройденное за три часа:

Аналогично можно определить расстояние, которое было пройдено со скоростью 78,4 км/ч. В задаче сказано, что с такой скоростью автомобиль двигался 2 часа:

Сложим эти расстояния и результат разделим на 5

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Задача 2. Велосипедист за первый час проехал 12,6 км, а в следующие 2 часа он ехал со скоростью 13,5 км/ч. Определить среднюю скорость велосипедиста.

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Скорость велосипедиста в первый час составляла 12,6 км/ч. Во второй и третий час он ехал со скоростью 13,5. Определим среднюю скорость движения велосипедиста:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Мода и медиана

Модой называют элемент, который встречается в выборке чаще других.

Рассмотрим следующую выборку: шестеро спортсменов, а также время в секундах за которое они пробегают 100 метров

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Элемент 14 встречается в выборке чаще других, поэтому элемент 14 назовем модой.

Рассмотрим еще одну выборку. Тех же спортсменов, а также смартфоны, которые им принадлежат

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Элемент iphone встречается в выборке чаще других, значит элемент iphone является модой. Говоря простым языком, носить iphone модно.

Конечно элементы выборки в этот раз выражены не числами, а другими объектами (смартфонами), но для общего представления о моде этот пример вполне приемлем.

Рассмотрим следующую выборку: семеро спортсменов, а также их рост в сантиметрах:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Упорядочим данные в таблице так, чтобы рост спортсменов шел по возрастанию. Другими словами, построим спортсменов по росту:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Выпишем рост спортсменов отдельно:

В получившейся выборке 7 элементов. Посередине этой выборки располагается элемент 184. Слева и справа от него по три элемента. Такой элемент как 184 называют медианой упорядоченной выборки.

Медианой упорядоченной выборки называют элемент, располагающийся посередине.

Отметим, что данное определение справедливо в случае, если количество элементов упорядоченной выборки является нечётным.

В рассмотренном выше примере, количество элементов упорядоченной выборки было нечётным. Это позволило нам быстро указать медиану

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Но возможны случаи, когда количество элементов выборки чётно.

К примеру, рассмотрим выборку в которой не семеро спортсменов, а шестеро:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Построим этих шестерых спортсменов по росту:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Выпишем рост спортсменов отдельно:

180, 182, 184, 186, 188, 190

В данной выборке не получается указать элемент, который находился бы посередине. Если указать элемент 184 как медиану, то слева от этого элемента будут располагаться два элемента, а справа — три. Если как медиану указать элемент 186, то слева от этого элемента будут располагаться три элемента, а справа — два.

В таких случаях для определения медианы выборки, нужно взять два элемента выборки, находящихся посередине и найти их среднее арифметическое. Полученный результат будет являться медианой.

Вернемся к нашим спортсменам. В упорядоченной выборке 180, 182, 184, 186, 188, 190 посередине располагаются элементы 184 и 186

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Найдем среднее арифметическое элементов 184 и 186

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Элемент 185 является медианой выборки, несмотря на то, что этот элемент не является членом исходной и упорядоченной выборки. Спортсмена с ростом 185 нет среди остальных спортсменов. Рост в 185 см используется в данном случае для статистики, чтобы можно было сказать о том, что срединный рост спортсменов составляет 185 см.

Поэтому более точное определение медианы зависит от количества элементов в выборке.

Если количество элементов упорядоченной выборки нечётно, то медианой выборки называют элемент, располагающийся посередине.

Если количество элементов упорядоченной выборки чётно, то медианой выборки называют среднее арифметическое двух чисел, располагающихся посередине этой выборки.

Медиана и среднее арифметическое по сути являются «близкими родственниками», поскольку и то и другое используют для определения среднего значения. Например, для предыдущей упорядоченной выборки 180, 182, 184, 186, 188, 190 мы определили медиану, равную 185. Этот же результат можно получить путем определения среднего арифметического элементов 180, 182, 184, 186, 188, 190

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Но медиана в некоторых случаях отражает более реальную ситуацию. Например, рассмотрим следующий пример:

Было подсчитано количество имеющихся очков у каждого спортсмена. В результате получилась следующая выборка:

0, 1, 1, 1, 2, 1, 2, 3, 5, 4, 5, 0, 1, 6, 1

Определим среднее арифметическое для данной выборки — получим значение 2,2

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

По данному значению можно сказать, что в среднем у спортсменов 2,2 очка

Теперь определим медиану для этой же выборки. Упорядочим элементы выборки и укажем элемент, находящийся посередине:

В данном примере медиана лучше отражает реальную ситуацию, поскольку половина спортсменов имеет не более одного очка.

Частота

Частота это число, которое показывает сколько раз в выборке встречается тот или иной элемент.

Предположим, что в школе проходят соревнования по подтягиваниям. В соревнованиях участвует 36 школьников. Составим таблицу в которую будем заносить число подтягиваний, а также число участников, которые выполнили столько подтягиваний.

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

По таблице можно узнать сколько человек выполнило 5, 10 или 15 подтягиваний. Так, 5 подтягиваний выполнили четыре человека, 10 подтягиваний выполнили восемь человек, 15 подтягиваний выполнили три человека.

Количество человек, повторяющих одно и то же число подтягиваний в данном случае являются частотой. Поэтому вторую строку таблицы переименуем в название «частота»:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Такие таблицы называют таблицами частот.

Частота обладает следующим свойством: сумма частот равна общему числу данных в выборке.

Это означает, что сумма частот равна общему числу школьников, участвующих в соревнованиях, то есть тридцати шести. Проверим так ли это. Сложим частоты, приведенные в таблице:

4 + 5 + 10 + 8 + 6 + 3 = 36

Относительная частота

Относительная частота это в принципе та же самая частота, которая была рассмотрена ранее, но только выраженная в процентах.

Относительная частота равна отношению частоты на общее число элементов выборки.

Вернемся к нашей таблице:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Пять подтягиваний выполнили 4 человека из 36. Шесть подтягиваний выполнили 5 человек из 36. Восемь подтягиваний выполнили 10 человек из 36 и так далее. Давайте заполним таблицу с помощью таких отношений:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Выполним деление в этих дробях:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Выразим эти частоты в процентах. Для этого умножим их на 100. Умножение на 100 удобно выполнить передвижением запятой на две цифры вправо:

Как находить размах в алгебре. Смотреть фото Как находить размах в алгебре. Смотреть картинку Как находить размах в алгебре. Картинка про Как находить размах в алгебре. Фото Как находить размах в алгебре

Теперь можно сказать, что пять подтягиваний выполнили 11% участников, 6 подтягиваний выполнили 14% участников, 8 подтягиваний выполнили 28% участников и так далее.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

42 thoughts on “Элементы статистики”

Спасибо, что вы вернулись.
Будут ли новые уроки?

Источник

Как находить размах в алгебре

Среднее арифметическое ряда чисел – это сумма данных чисел, поделенная на количество слагаемых.

Среднее арифметическое называют средним значением числового ряда.

Пример : Найдем среднее арифметическое чисел 2, 6, 9, 15.

Решение. У нас четыре числа. Значит, надо их сумму разделить на 4. Это и будет среднее арифметическое данных чисел:
(2 + 6 + 9 + 15) : 4 = 8.

Среднее геометрическое ряда чисел – это корень n-й степени из произведения этих чисел.

Пример : Найдем среднее геометрическое чисел 2, 4, 8.

Решение. У нас три числа. Значит, надо найти корень третьей степени из их произведения. Это и будет среднее геометрическое данных чисел:

3 √ 2 · 4 · 8 = 3 √64 = 4

Размах ряда чисел – это разность между наибольшим и наименьшим из этих чисел.

Пример : Найти размах чисел 2, 5, 8, 12, 33.

Решение : Наибольшее число здесь 33, наименьшее 2. Значит, размах составляет 31:

Мода ряда чисел – это число, которое встречается в данном ряду чаще других.

Пример : Найти моду ряда чисел 1, 7, 3, 8, 7, 12, 22, 7, 11, 22, 8.

Решение : Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел.

Медиана.

В упорядоченном ряде чисел:

Медиана нечетного количества чисел – это число, записанное посередине.

Пример : В ряде чисел 2, 5, 9, 15, 21 медианой является число 9, находящееся посередине.

Медиана четного количества чисел – это среднее арифметическое двух чисел, находящихся посередине.

Пример : Найти медиану чисел 4, 5, 7, 11, 13, 19.

Решение : Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел:

Число 9 и является медианой данного ряда чисел.

В неупорядоченном ряде чисел:

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.

Пример 1 : Найдем медиану произвольного ряда чисел 5, 1, 3, 25, 19, 17, 21.

Решение : Располагаем числа в порядке возрастания:

1, 3, 5, 17, 19, 21, 25.

Посередине оказывается число 17. Оно и является медианой данного ряда чисел.

Пример 2 : Добавим к нашему произвольному ряду чисел еще одно число, чтобы ряд стал четным, и найдем медиану:

5, 1, 3, 25, 19, 17, 21, 19.

Решение : Снова выстраиваем упорядоченный ряд:

1, 3, 5, 17, 19, 19, 21, 25.

Посередине оказались числа 17 и 19. Находим их среднее значение:

Число 18 и является медианой данного ряда чисел.

Источник

Как находить размах в алгебре

В этом учебном году мы начали изучать два предмета: алгебру и геометрию. При изучении алгебры что-то мне знакомо из курса 5,6 классов, что-то мы изучаем более основательно и углубленно, многое узнаем нового. Вот новое для меня при изучении алгебры – это знакомство с некоторыми статистическими характеристиками: размах и мода. Со средним арифметическим мы встречались уже ранее. Еще интересным оказалось, что эти характеристики применяются не только на уроках математики, но и в жизни, на практике (в производстве, в сельском хозяйстве, в спорте и т.д.).

Когда мы в классе на уроке решали задачи к этому пункту, то возникла идея составить самим задачи и подготовить к ним презентации, то есть как бы начать создавать свой задачник. Каждый придумывает задачу, делает к ней презентацию, как бы каждый работает над своим мини-проектом, а на уроке все вместе решаем, обсуждаем. Если допущены ошибки, то их исправляем. А в конце провести публичную защиту этих мини-проектов.

Цель моей работы: изучение статистики.

Задачи: начать разработку задачника по статистике в виде компьютерных презентаций.

Предмет исследования: статистика.

Объект исследования: статистические характеристики (среднее арифметическое, размах, мода).

В ходе изучения раздела «Статистические характеристики» мы познакомились с такими понятиями: среднее арифметическое, размах, мода. Эти характеристики находят применение в статистике. Эта наука изучает численность отдельных групп населения страны и ее регионов, производство и потребление разнообразных видов продукции, перевозку грузов и пассажиров различными видами транспорта, природные ресурсы и т.п.

“Статистика знает всё”, – утверждали Ильф и Петров в своем знаменитом романе “Двенадцать стульев” и продолжали: “Известно, сколько какой пищи съедает в год средний гражданин республики… Известно, сколько в стране охотников, балерин, станков, велосипедов, памятников, маяков и швейных машинок… Как много жизни, полной пыла, страстей и мысли, глядит на нас со статистических таблиц. ” Это ироническое описание дает довольно точное представление о статистике (от лат. status – состояние) – науке, изучающей, обрабатывающей и анализирующей количественные данные о самых разнообразных массовых явлениях в жизни.

Экономическая статистика изучает изменение цен, спроса и предложения на товары, прогнозирует рост и падение производства и потребления.

Медицинская статистика изучает эффективность различных лекарств и методов лечения, вероятность возникновения некоторого заболевания в зависимости от возраста, пола, наследственности, условий жизни, вредных привычек, прогнозирует распространение эпидемий.

Демографическая статистика изучает рождаемость, численность населения, его состав (возрастной, национальный, профессиональный).

А еще есть статистика финансовая, налоговая, биологическая, метеорологическая. [1]

В школьном курсе алгебры мы рассматриваем понятия и методы описательной статистики, которая занимается первичной обработкой информации и вычислением наиболее показательных числовых характеристик. По словам английского статистика Р. Фишера: “Статистика может быть охарактеризована как наука о сокращении и анализе материала, полученного в наблюдениях”. Всю совокупность числовых данных, полученных в выборке можно (условно) заменить несколькими числовыми параметрами, некоторые из них мы уже рассматривали на уроках – это среднее арифметическое, размах, мода. Результаты статистических исследований широко используются для практических и научных выводов, поэтому важно уметь определять эти статистические характеристики.

Результаты статистических исследований широко используются для практических и научных выводов. [2]

Определение 1. Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых. [3]

Пример: При изучении учебной нагрузки выделили группу из 12 учащихся 7 класса. Просили отметить в определенный день время (в минутах), затраченное на выполнение домашнего задания по алгебре. Получили такие данные:

23, 18, 25, 20, 25, 25, 32, 37, 34, 26, 34, 25. Имея этот ряд данных, можно определить, сколько минут в среднем затратили учащиеся на выполнение домашнего задания по алгебре. Для этого надо сложить указанные 12 чисел и полученную сумму разделить

Число 27, полученное в результате, называют средним арифметическим рассматриваемого ряда чисел.

Среднее арифметическое является важной характеристикой ряда чисел но иногда полезно рассматривать и другие средние.

Определение 2. Модой ряда чисел называется число, которое встречается в данном ряду чаще других. [4]

Пример: При анализе сведений о времени, затраченном учащимися на выполнение домашнего задания по алгебре, нас могут заинтересовать не только среднее арифметическое и размах полученного ряда данных, но и другие показатели. Например, интересно знать, какой расход времени является типичным для выделенной группы учащихся, т.е. какое число встречается в ряду данных чаще всего. Нетрудно заметить, что в нашем примере это число 25. говорят, что число 25 – мода рассматриваемого ряда.

Ряд чисел может иметь более одной моды, а может не иметь моды совсем. Например, в ряду чисел 47, 46, 50, 47, 52, 49, 45, 43, 54, 52, 47, 52 две моды – это числа 47 и 52, так как каждое из них встречается в ряду по три раза, а остальные числа – менее трех раз.

В ряду чисел 69, 68, 66, 70, 67, 62, 71, 74, 63, 73, 72 моды нет.

Моду ряда данных обычно находят, когда хотят выявить некоторый типичный показатель. Мода—показатель, который широко используется в статистике. Одним из наиболее частых использований моды является изучение спроса. Например, при решении вопросов, в пачки какого веса фасовать масло, какие открывать авиарейсы и т. п., предварительно изучается спрос и выявляется мода — наиболее часто встречающийся заказ.

Однако нахождение среднего арифметического или моды далеко не всегда позволяет делать надежные выводы на основе статистических данных. если у нас есть ряд данных, то для обоснованных выводов и надежных прогнозов на их основе, помимо средних значений, надо еще указать, насколько используемые данные различаются между собой. Одним из статистических показателей различия или разброса данных является размах.

Определение 3. Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел. [5]

Пример: В рассмотренном выше примере мы нашли, что в среднем учащиеся затратили на выполнение домашнего задания по алгебре по 27 минут. Однако анализ проведенного ряда данных показывает, что время, затраченное некоторыми учащимися, существенно отличается от 27 минут, т.е. от среднего арифметического. Наибольший расход равен 37 минут, а наименьший – 18 минут. Разность между наибольшим и наименьшим расходом времени составляет 19 минут. Вот в этом случае рассматривается еще одна статистическая характеристика – размах. Размах ряда находят, когда хотят определить, как велик разброс данных в ряду.

А теперь хочу представить результаты нашей работы: мини-проекты для создания задачника по статистике.

Задача № 1. Автор Кушнарев Павел, учащийся 7 класса.

Я работаю в салоне-магазине «Супер-авто» главным менеджером отдела продаж. Наш салон предоставлял автомобили для участия в игре «полный привод». В прошлом году на выставке-продаже наши машины имели успех! Результаты продаж следующие:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *