Как находить разность комплексных чисел
Как находить разность комплексных чисел
VII .1. Формы записи комплексных чисел и действия над ними
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z = x + iy и называются комплексно сопряженными.
Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотношений сторон в прямоугольном треугольнике получаем
Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле
Аргумент определяется из формул:
Используя формулу Эйлера
комплексное число можно записать в так называемой показательной (или экспоненциальной) форме
где r =| z | — модуль комплексного числа, а угол ( k =0;–1;1;–2;2…).
Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.
На множестве комплексны х чисел определен ряд операций.
Из (7.11) следует важнейшее соотношение i 2 = –1. Действительно,
Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = –1 и формулы разности квадратов.
Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z 2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
в натуральную степень, определенному ранее формулой (7.13).
(7.18) называется второй формулой Муавра.
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Калькулятор для решения комплексных чисел.
Сумма, разность, произведение и частное комплексных чисел.
Вычислить n-ую степень и корень n-ой степени.
С помощью данного калькулятора вы можете сложить, вычесть, умножить, и разделить комплексные числа.
Программа решения комплексных чисел не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс нахождения решения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Числа в действительную или мнимую части можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так + i
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
Немного теории.
Понятие комплексного числа
Определение.
Комплексными числами называют выражения вида \(а + bi\) где \(a\) и \(a\) — действительные числа, а \(i\) — некоторый символ, для которого по определению выполняется равенство \( i^2=-1 \).
Название «комплексные» происходит от слова «составные» — по виду выражения \(а + bi\). Число \(а\) называется действительной частью комплексного числа \(а + bi\), а число \(b\) — его мнимой частью. Число \(i\) называется мнимой единицей.
Например, действительная часть комплексного числа \(2-3i\) равна \(2\), мнимая часть равна \(-3\).
Запись комплексного числа в виде \(а + bi\) называют алгебраической формой комплексного числа.
Равенство комплексных чисел
Определение.
Два комплексных числа \(a + bi\) и \(c + di\) называются равными тогда и только тогда, когда \(a =c\) и \(b =d\), т. е. когда равны их действительные и мнимые части.
Сложение и умножение комплексных чисел
Операции сложения и умножения двух комплексных чисел определяются следующим образом.
Определения.
Суммой двух комплексных чисел \(a+ bi\) и \(c + di\) называется комплексное число \( (a+c) + (b+d)i \), т.е. \( (a + bi) + (c + di) = (a + c) + (b + d)i \).
Из двух предыдущих формул следует, что сложение и умножение комплексных чисел можно выполнять по правилам действий с многочленами. Поэтому нет необходимости запоминать эти формулы, их можно получить по обычным правилам алгебры, считая, что \( i^2=-1 \).
Основные свойства сложения и умножения комплексных чисел
1. Переместительное свойство
\( z_1 + z_2 = z_2 + z_1 \),
\( z_1z_2 = z_2z_1 \)
2. Сочетательное свойство
\( (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3) \),
\( (z_1z_2)z_3 = z_1(z_2z_3) \)
3. Распределительное свойство
\( z_1(z_2 + z_3) = z_1z_2 + z_1z_3 \)
Комплексно сопряженные числа
Отметим, что \( \overline
\( \overline<(\overline
Равенство \( \overline
Модуль комплексного числа
Определение.
Модулем комплексного числа \(z = a + bi\) называется число \( \sqrt \), т.е.
\( |z|=|a+bi| = \sqrt \)
Из данной формулы следует, что \( |z| \geqslant 0 \) для любого комплексного числа \(z\), причем \(|z|=0\) тогда и только тогда, когда \(z=0\), т.е. когда \(a=0\) и \(b=0\).
Вычитание комплексных чисел
Вычитание комплексных чисел вводится как операция, обратная сложению: для любых комплексных чисел \(z_1\) и \(z_2\) существует, и притом только одно, число \(z\), такое, что
\( z + z_2 = z_1 \),
т.е. это уравнение имеет только один корень.
Деление комплексных чисел
Деление комплексных чисел вводится как операция, обратная умножению: для любых комплексных чисел \( z_1 \) и \( z_2 \neq 0 \) существует, и притом только одно, число \( z \), такое, что \( z \cdot z_2=z_1 \) т.е. это уравнение относительно z имеет только один корень, который называется частным чисел \( z_1 \) и \( z_2 \) и обозначается \( z_1:z_2 \), или \( \frac
Комплексное число нельзя делить на ноль.
Частное комплексных чисел \( z_1 \) и \( z_2 \neq 0 \) можно найти по формуле
$$ \frac
Геометрическая интерпретация комплексного числа.
Комплексная плоскость
Действительные числа геометрически изображаются точками числовой прямой. Комплексное число \(a + bi\) можно рассматривать как пару действительных чисел \((a; b)\). Поэтому естественно комплексные числа изображать точками плоскости.
Пусть на плоскости задана прямоугольная система координат. Комплексное число \(z = a + bi\) изображается точкой плоскости с координатами \((a; b)\), и эта точка обозначается той же буквой \(z\).
Отметим, что точки \(z\) и \(-z\) симметричны относительно точки \(O\) (начала координат), а точки \( z \) и \( \overline
Комплексное число \(z = a+bi\) можно изображать вектором с началом в точке \(O\) и концом в точке \(z\). Этот вектор будем обозначать той же буквой \(z\), длина этого вектора равна \(|z|\).
Геометрический смысл модуля комплексного числа
Выясним геометрический смысл модуля комплексного числа \(|z|\). Пусть \(z = a+bi\). Тогда по определению модуля \( |z|= \sqrt \). Это означает, что \(|z|\) — расстояние от точки \(O\) до точки \(z\).
Например, равенство \(|z| = 4\) означает, что расстояние от точки \(O\) до точки \(z\) равно \(4\). Поэтому множество всех точек \(z\), удовлетворяющих равенству \(|z| = 4\), является окружностью с центром в точке \(O\) радиуса \(4\). Уравнение \(|z| = R\) является уравнением окружности с центром в точке \(O\) радиуса \(R\), где \(R\) — заданное положительное число.
Геометрический смысл модуля разности комплексных чисел
Выясним геометрический смысл модуля разности двух комплексных чисел, т.е. \( |z_1-z_2| \).
Пусть \( z_1 = a_1+b_1i, \; z_2 = a_2+b_2i \)
Тогда \( |z_1-z_2| = |(a_1-a_2) + (b_1-b_2)i| = \sqrt <(a_1+a_2)^2 + (b_1+b_2)^2>\)
Из курса геометрии известно, что это число равно расстоянию между точками с координатами \( (a_1;b_1) \) и \( (a_2;b_2) \).
Итак, \( |z_1-z_2| \) — расстояние между точками \( z_1 \) и \( z_2 \).
Тригонометрическая форма комплексного числа. Аргумент комплексного числа
Определение
Аргумент комплексного числа \( z \neq 0 \) — это угол \( \varphi \) между положительным направлением действительной оси и вектором \(Oz\). Этот угол считается положительным, если отсчет ведется против часовой стрелки, и отрицательным при отсчете по часовой стрелке.
Связь между действительной и мнимой частями комплексного числа \(z = a + bi\), его модулем \(r=|z|\) и аргументом \( \varphi \) выражается следующими формулами:
\( \left\< \begin
Аргумент комплексного числа \(z = a+bi\) ( \( z \neq 0 \) ) можно найти, решив систему (2). Эта система имеет бесконечно много решений вида \( \varphi =\varphi_0+2k\pi \), где \( k\in\mathbb
Для нахождения аргумента комплексного числа \(z = a+bi\) ( \( z\neq 0 \) ) можно воспользоваться формулой
\( tg \varphi = \large \frac \normalsize \qquad (3) \)
При решении уравнения (3) нужно учитывать, в какой четверти находится точка \(z = a+bi\).
Запись комплексного числа в тригонометрической форме
Умножение и деление комплексных чисел, записанных в тригонометрической форме
С помощью тригонометрической формы записи комплексных чисел удобно находить произведение и частное комплексных чисел \(z_1\) и \(z_2\). Если два комплексных числа записаны в тригонометрической форме :
\( z_1 = r_1(\cos\varphi_1 +i\sin\varphi_1), \quad z_2 = r_2(\cos\varphi_2 +i\sin\varphi_2) \) то произведение этих комплексных чисел можно найти по формуле:
\( z_1z_2 = r_1r_2(\cos(\varphi_1+\varphi_2) +i\sin(\varphi_1+\varphi_2)) \)
Из этой формулы следует, что при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
Из этой формулы следует, что модуль частного двух комплексных чисел равен частному модулей делимого и делителя, а разность аргументов делимого и делителя является аргументом частного.
Формула Муавра
Основные действия над комплексными числами
Комплексные числа — определение и основные понятия
Обычные числа представляют собой множество действительных чисел, для обозначения которых используют букву R. Каждое число из множества можно отметить на числовой прямой.
К действительным числам носят:
Каждая точка на числовой прямой характеризуется некоторым действительным числом. Комплексное число является двумерным числом и записано в виде:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Где а и b являются действительными числами, i представляет собой так называемую мнимую единицу.
Уравнение можно мысленно поделить на несколько частей:
Следует отметить, что a + bi является единым числом, а не сложением. Места действительной и мнимой частей в уравнении можно менять:
Мнимую единицу допускается переставлять:
При таких операциях смысл выражения остается прежним. Однако стандартная запись комплексного числа имеет такой вид:
Данное утверждение можно привести в виде геометрической интерпретации. Тогда комплексные числа изображают на комплексной плоскости.
С помощью R обозначаю множество действительных чисел. В случае, когда требуется обозначить множество комплексных чисел, принято использовать букву С. Наличие буквы С на чертеже говорит о том, что на нем представлена комплексная плоскость. Данная плоскость включает две оси:
Re z — является действительной осью;
Im z — представляет собой мнимую ось.
Правила оформления такого графика практически не отличаются от требований к чертежам для декартовой системы координат. По осям задают масштаб и отмечают:
С помощью комплексной плоскости можно построить заданные комплексные числа:
Можно рассмотреть следующие комплексные числа:
Действительные числа являются частным случаем комплексных чисел. Действительная ось Re z обозначает в точности множество действительных чисел R, то есть на данной оси расположены все числа с обычными свойствами. Можно сформулировать справедливое утверждение: множество действительных чисел R представляет собой подмножество множества комплексных чисел С.
Данные числа являются комплексными числами, мнимая часть которых нулевая:
Мнимые числа с нулевой действительностью, которые расположены на мнимой оси Im z:
Есть ряд чисел с ненулевыми действительной и мнимой частью:
Для их обозначения используют точки на комплексной плоскости. К таким точкам проводят радиус-векторы из начала координат. Радиус-векторы не принято чертить к числам, которые расположены на осях и сливаются с ними.
Формы, как записываются
Алгебраическая запись комплексного числа имеет такой вид:
Кроме данной формы существует еще несколько способов для записи. Удобным и наглядным геометрическим представлением является:
z = a + bi в виде вектора с координатами (а;b) на декартовой плоскости, либо точкой — концом вектора с аналогичными координатами.
В этом случае пару комплексных чисел представляют в виде суммы соответствующих векторов, которую рассчитывают с помощью правила параллелограмма. Согласно теореме Пифагора, длина вектора с координатами (а;b) определяется, как:
Данная величина представляет собой модуль комплексного числа z = a + bi и имеет такое решение:
Вектор и положительное направление оси абсцисс образуют угол, отсчитанный против часовой стрелки. Данный угол называют аргументом комплексного числа z и обозначают, как Arg z. Аргумент имеет неоднозначное определение с точностью до прибавления величины, которая кратна 2π радиан. При повороте на такой угол вокруг начала координат вектор не изменяется.
В том случае, когда вектор длиной r с положительным направлением оси абсцисс составляет угол ϕ, его координаты будут следующими:
\(\left(r*\cos \varphi ;r*\sin \varphi \right)\)
Таким образом, получают тригонометрическую форму записи комплексного числа:
\(z=\left|z \right|*\left(\cos (Arg z)+i\sin (Arg z) \right)\)
Из-за более простого вида вкладок комплексные числа, как правило, представляют в тригонометрической форме.
Существует показательная форма для записи комплексных чисел. Какое-либо комплексное число, не равное нулю, можно представить в показательной форме:
Где \(\left|z \right|\) является модулем комплексного числа,
\(\varphi\) представляет собой аргумент комплексного числа.
Представить комплексное число в показательной форме можно с помощью нескольких действий:
Основные действия над комплексными числами с примерами
Манипуляции с комплексными числами выполняют так же, как с действительными числами. Арифметические действия могут быть следующими:
Складывать и вычитать комплексные числа можно с помощью правила:
(a + bi) ± (c + di) = (a ± c) + (b ± d)i
Умножение комплексных чисел выполняют таким образом:
(a + bi) · (c + di) = (ac – bd) + (ad + bc)i
В данном случае \(i^<2>=-1\)
Число \(\bar
С помощью равенства \(z*\bar
Сложение комплексных чисел
Ели требуется сложить пару комплексных чисел:
Сначала нужно найти сумму их действительных и мнимых частей:
Таким образом, сумма какого-либо количества слагаемых определяется путем сложения действительных частей и сложением мнимых частей. В случае комплексных чисел справедливо правило первого класса, которое гласит, что от перестановки слагаемых их сумма остается прежней:
Вычитание комплексных чисел
Разность комплексных чисел:
Действие аналогично сложению. Разница заключается в необходимости выделения скобками вычитаемого числа. Далее следует раскрыть скобки и изменить знак:
Полученное в результате число обладает двумя частями. Действительная часть является составной:
Наглядно ответ будет записан в такой форме:
Умножение комплексных чисел
Можно найти произведение комплексных чисел:
Произведение будет записано таким образом:
Раскрыть скобки следует, руководствуясь правилом умножения многочленов, учитывая, что \(i^<2>=-1\)
Для того чтобы перемножить многочлены, требуется каждый член одного многочлена умножить на каждый член другого многочлена. Таким образом:
Как и в случае со сложением, произведение комплексных чисел перестановочно, то есть справедливо равенство:
Деление комплексных чисел
На примере комплексных чисел:
требуется определить частное:
Частное будет записано в таком виде:
Делить числа необходимо с помощью метода умножения знаменателя и числителя на сопряженное знаменателю выражение. В этом случае пригодится стандартная формула:
По условию знаменатель 7-6i. В данном знаменателе уже есть (а-b), поэтому сопряженным выражением в таком случае является (a+b), то есть 7+6i. Исходя из правила, знаменатель умножают на 7+6i. Сохранить равенство можно с помощью умножения числителя на то же самое число 7+6i:
Затем в числителе необходимо раскрыть скобки, то есть умножить пару чисел, согласно отмеченному ранее правилу. Для знаменателя требуется использовать формулу \((a-b)(a+b)=a^<2>-b^<2>\) и \(i^<2>=-1\)
Уравнение будет записано в таком виде:
Нахождение аргумента
При выполнении действий с модулем комплексных чисел необходимо руководствоваться формулой:
Для поиска аргумента комплексного числа требуется использовать определенную формулу для конкретного случая. Уравнение подбирается, исходя из положения числа z = a + bi в координатной четверти. Существует всего три таких варианта:
Извлечение корня из комплексных чисел
Комплексные числа в тригонометрической форме умножают таким образом:
z_<1>*z_<2>=\left|z_ <1>\right|*\left|z_ <2>\right|*(\cos (Arg z_<1>+Arg z_<2>)+i\sin (Arg z_<1>+Arg z_<2>))2
При умножении пары комплексных чисел их модули перемножаются, а аргументы складываются. Исходя из этого утверждения, вытекают формулы Муавра:
С помощью этого равенства можно извлечь корни любой степени из комплексных чисел. Корень n-й степени из числа z представляет собой комплексное число w, которое:
Где k может обладать любым значением из множества (0, 1, …, n-1).
Таким образом, в любом случае имеется ровно n корней n-ой степени из комплексного числа. На плоскости все они будут расположены в вершинах правильного n-угольника.
Возведение комплексных чисел в степень
В качестве примера можно возвести в квадрат комплексное число:
Первый способ заключается в записи степени в виде произведения множителей:
Далее необходимо перемножить числа, согласно правилу умножения многочленов.
Второй метод заключается в использовании уравнения для сокращенного умножения:
Выражение примет следующий вид:
В случае комплексного числа можно достаточно просто записать определенную формулу для сокращенного умножения:
Такую же формулу можно представить для расчета квадрата разности, куба суммы и куба разности. Если необходимо возвести в 5-ю, 10-ю или любую другую степень комплексное число, следует воспользоваться тригонометрической формой комплексного числа, то есть формулу Муавра. К примеру, дано комплексное число в тригонометрической форме:
\(x = <-b \pm \sqrt\over 2a>z=\left|z \right|*\left(\cos \varphi +i\sin \varphi \right)\)
Данное число требуется возвести в натуральную степень n. Для этого необходимо использовать уравнение:
\(z^
Представленная формула вытекает из правила для умножения комплексных чисел, которые записаны в тригонометрической форме. Для того чтобы найти произведение чисел, требуется:
\(z_<1>=\left|z_ <1>\right|*(\cos \varphi _<1>+i\sin \varphi _<1>)\)
\(z_<2>=\left|z_ <2>\right|*(\cos \varphi _<2>+i\sin \varphi _<2>)\)
Далее требуется перемножить модули этих комплексных чисел и найти сумму аргументов:
\(x = <-b \pm \sqrt\over 2a>z_<1>* z_<2>=\left|z_ <1>\right|*\left|z_ <2>\right|*(\cos( \varphi _<1>+\varphi _<2>)+i\sin ( \varphi _<1>+\varphi _<2>)\)
Аналогичный порядок действий для показательной формы комплексного числа: