Как находится площадь в математике
Площадь
Что такое площадь
Понятие площади фигур рассматривается одним из разделов математики — конкретно, геометрией. Результат решения задач с нахождением площади геометрических фигур может использоваться для решения математических задач, в быту, в производстве.
Площадь фигуры — численная характеристика, которая передает информацию о размере геометрической фигуры.
Фигура, в математическом мире определяемая как множество точек на плоскости, должна быть ограничена со всех сторон, чтобы иметь понятие площади. Если фигура располагается на одной плоскости, она не имеет объема, а только площадь.
В самом простом случае, площадь фигуры можно посчитать по количеству клеток, которые она занимает. Подобным способом можно легко посчитать площадь квадрата, прямоугольника или прямоугольного равнобедренного треугольника.
Площадь в геометрии обозначается знаком S, от английского square — площадь.
Как математическая характеристика, площадь имеет четыре характеристики:
Единицы измерения площади
Площадь фигуры может измеряться в разных единицах в зависимости от поверхности, на которой располагается. Основной системой измерения считается Международная система единиц СИ.
Площадь измеряется в единицах измерения в квадрате:
В Древней Руси употребляли такие величины, как квадратная верста, десятина, квадратный сажень.
В античных источниках единицей измерения площади были актус, арура, центурия, югер.
Формула нахождения площади в математике
Существует множество формул нахождения площади простых геометрических фигур, которые зависят, в основном, от количества углов, сторон и их соотношений.
Площадь прямоугольника
Прямоугольником является геометрическая фигура, все углы которой равны 90°. При этом таких углов должно быть, как минимум три, а четвертый будет равен 90° в силу закона о сумме углов четырехугольника в евклидовой геометрии.
Вычисление площади прямоугольника будет происходить через умножение сторон:
где a и b являются сторонами прямоугольника.
Площадь квадрата
Квадратом является прямоугольник с равными сторонами. Все его углы равны 90°. Площадь квадрата можно найти сразу двумя способами:
По длине стороны:
Через диагонали:
где a — длина сторон квадрата;
d — длина диагоналей квадрата.
Площадь круга
Кругом является часть плоскости, которая лежит внутри окружности. Круг не имеет ни одного угла, а точки его окружности находятся на равном удалении от центра.
Площадь круга можно найти двумя способами:
Через радиус:
где π — постоянная Пи, равна 3,14.
Радиус, упоминаемый в формуле, является линией или отрезком, соединяющим центр и любую из точек окружности.
Через диаметр:
где π — постоянная Пи, равна 3,14.
Диаметр является отрезком, соединяющим две точки окружности и проходящим через центр. Он включает в себя два противоположно направленных радиуса.
Площадь эллипса
Эллипс является частным случаем окружности. Он, так же, как и круг, не имеет ни одного угла, но при этом точки окружности находятся на разном удалении от центра.
Найти площадь эллипса можно только одним способом: через произведение длин большой и малой полуосей эллипса и числа пи.
Площадь эллипса находится через произведение длин большой и малой полуосей эллипса и числа пи:
Площадь параллелограмма
Параллелограмм является геометрической фигурой с 4 углами и 4 сторонами, однако он отличается от прямоугольника по строению. Его противолежащие стороны попарно параллельны, а углы равны зеркально противолежащим.
Частными случаями параллелограмма являются квадрат, прямоугольник и ромб.
Найти площадь параллелограмма можно тремя способами:
Через сторону и высоту:
где a — сторона, к которой проведена высота,
h — высота непосредственно.
Через две стороны и величину угла между ними:
Через диагонали и угол между ними:
S = 1 2 × d 1 × d 2 × sin y
где d 1 и d 2 — это диагонали параллелограмма,
y — угол между ними.
Площадь ромба
Ромб, как частный случай параллелограмма, имеет те же свойства, кроме того, что все его стороны равны.
Площадь ромба также можно найти тремя способами:
По длине стороны и высоте:
Формула площади ромба по стороне и высоте выглядит так же, как и площадь параллелограмма по таким же характеристикам, с условием, что все высоты ромба будут равны:
По длине стороны и углу:
Формула площади ромба через длину сторон и углу между ними похожа на соответствующую формулу площади параллелограмма с условием того, что стороны равны, а значит, их перемножение можно заменить квадратом величины стороны:
По длине его диагоналей:
Площадь трапеции
Трапеция отличается от всех предыдущих фигур тем, что только две ее стороны, боковые, могут быть равны между собой. При этом они не параллельны. Две другие стороны параллельны, но не равны. Сумма углов трапеции равна 360°.
Площадь трапеции можно найти двумя способами:
По формуле Герона:
По длине основ и высоте:
Площадь треугольника
Треугольник является геометрической фигурой с тремя сторонами и суммой углов, равной 180°. По величине углов треугольники делятся на острые, тупые и прямоугольные. По числу равных сторон треугольники делятся на разносторонние, равносторонние и равнобедренные.
Площадь треугольника можно найти множеством способов:
По гипотенузе и острому углу:
a — любой из прилежащих острых углов.
Через сторону и высоту:
Через три стороны:
где р — полупериметр.
Через две стороны и угол между ними:
S = 1 2 × a × b × sin y
Через три стороны и радиус описанной окружности:
Через три стороны и радиус вписанной окружности:
где р — полупериметр.
Пояснения на примерах
Стены класса равны 7 и 5 метрам. Чему будет равна площадь пола в данной комнате?
Решение: S = 7 × 5 = 35
Ткань летучего змея порвалась. Вася решил сделать новую форму. Он посчитал, что длина жердей летучего змея равна 15 и 23 см. Форму какой площади нужно взять Васе с учетом того, что для припусков для пришивания нужно взять еще 2 см?
Равнобедренный треугольник имеет основание 4 дм и высоту 7 дм. Сколько будет его площадь?
Как найти площадь фигуры
Обозначение площади
Площадь — это одна из характеристик замкнутой геометрической фигуры, которая дает нам информацию о ее размере. S (square) — знак площади.
Если параметры фигуры переданы в разных единицах измерения длины, мы не сможем решить ни одну задачу. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.
Популярные единицы измерения площади:
Круг — это множество точек на плоскости, ограниченных окружностью, удаленных от центра на равном радиусу расстоянии. Радиусом принято называть отрезок, соединяющий центр с любой точкой окружности.
S = &pi × d 2 : 4;, где d — это диаметр.
S = L 2 : (4 × π), где L — это длина окружности.
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Треугольник
Треугольник — это геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой, соединенных тремя отрезками. Эти три точки принято называть вершинами, а отрезки — сторонами. Рассчитать площадь треугольника можно несколькими способами по исходными данным, давайте их рассмотрим.
1. Если известна сторона и высота.
S = 0,5 × a × h, где a — длина основания, h — высота, проведенная к основанию.
Основание может быть расположено иначе, например так:
При тупом угле высоту можно отразить на продолжение основания:
При прямом угле основанием и высотой будут его катеты:
2. Если известны две стороны и синус угла.
S = 0,5 × a × b * sinα, где a и b — две стороны, sinα — синус угла между ними.
3. Если есть радиус описанной окружности.
S = (a × b × с) : (4 × R), где a, b и с — стороны треугольника, а R — радиус описанной окружности.
4. Если есть радиус вписанной окружности.
S = p × r, где р — полупериметр треугольника, r — радиус вписанной окружности.
Прямоугольник
Прямоугольник — это параллелограмм, у которого все углы прямые. Узнать площадь прямоугольника помогут следующие формулы:
S = a × b, где a, b — длина и ширина прямоугольника.
Диагональ — это отрезок, который соединяет вершины противоположных углов. Она есть во всех фигурах, число вершин которых больше трех.
S = 0,5 × d 2 × 𝑠𝑖𝑛(𝑎), где d — диагональ, α — угол между диагоналями.
Квадрат
Квадрат — это тот же прямоугольник, но при условии, что все его стороны равны. Найти его площадь легко:
S = d 2 : 2, где d — диагональ.
Трапеция
Трапеция — это четырехугольник, у которого две стороны параллельны и две не параллельны.
S = 0,5 × (a + b) × h, где a, b — два разных основания, h — высота трапеции.
Построить высоту трапеции можно, начертив отрезок так, чтобы он соединил параллельные стороны под прямым углом.
Параллелограмм и ромб
Параллелограмм — четырехугольник, противоположные стороны которого попарно параллельны.
Ромб — это параллелограмм, у которого все стороны равны.
Расскажем про общие формулы расчета площади этих фигур.
S = a × h, где a — сторона, h — высота.
S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
Для ромба: S = 0,5 × (d1 × d2), где d1, d2 — две диагонали. Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.
Площадь фигур
Две фигуры называют равными, если одну их них можно так наложить на другую, что эти фигуры совпадут.
Площади равных фигур равны. Их периметры тоже равны.
Площадь квадрата
Для вычисления площади квадрата нужно умножить его длину на саму себя.
SEKFM = EK · EK
SEKFM = 3 · 3 = 9 см 2
Формулу площади квадрата, зная определение степени, можно записать следующим образом:
Площадь прямоугольника
Для вычисления площади прямоугольника нужно умножить его длину на ширину.
SABCD = AB · BC
SABCD = 3 · 7 = 21 см 2
Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.
Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.
Площадь сложных фигур
Площадь всей фигуры равна сумме площадей её частей.
Задача: найти площадь огородного участка.
Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя правило выше.
Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м 2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м 2
Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м 2
Ответ: S = 65 м 2 — площадь огородного участка.
Свойство ниже может вам пригодиться при решении задач на площадь.
Диагональ прямоугольника делит прямоугольник на два равных треугольника.
Площадь любого из этих треугольников равна половине площади прямоугольника.
Вначале найдём площадь прямоугольника по формуле.
SABCD = AB · BC
SABCD = 5 · 4 = 20 см 2
S ABC = SABCD : 2
S ABC = 20 : 2 = 10 см 2
S ABC = S
ACD = 10 см 2
Площадь
Рассмотрим фигуру ниже:
Вся фигура состоит из 8 квадратов со стороной 1 см каждый.
Площадь измеряется только в квадратных единицах длины. Всегда проверяйте свои ответы.
В математике для нахождения площади геометрических фигур используют специальные формулы, в которых площадь обозначается заглавной латинской буквой « S ».
Напоминаем, что площадь квадрата можно найти, умножив длину его стороны на саму себя.
Единицей площади служит площадь единичного квадрата. Например, если длина стороны квадрата, равна 1 м, то его площадь равна 1 квадратному метру ( 1 м 2 ); если длина его стороны равна 1 см, то его площадь равна 1 квадратному сантиметру ( 1 см 2 ).
Для нахождения площади какой-либо фигуры её сравнивают с единичным квадратом.
Как перевести квадратные единицы
Рассмотрим квадрат со стороной 1 см.
S = 1 см · 1 см = 1см 2
Рассмотрим квадрат со стороной 1 м.
S = 1 м · 1 м = 1 м 2
Известно, что: 1 м = 100 см
1 м 2 = 1 м · 1 м = 100 см · 100 см = 10 000 см 2
Увеличим сторону квадрата равную 1 м в 10 раз. Получим квадрат со
стороной 10 м.
Площадь такого квадрата называют ар или сотка.
S = 10 м · 10 м = 100 м 2
В одном аре — сто квадратных метров.
Слово «сотка» часто используют в дачном хозяйстве, хотя это тоже самое, что и «ар».
1 ар (сотка) = 100 м 2
Значит: 1 ар (сотка) = 100 м 2 = 100 · 10 000 см 2 = 1 000 000 см 2
Увеличим сторону квадрата равную 10 м в 10 раз. Получим квадрат со
стороной 100 м.
Площадь такого квадрата называют гектар. Сокращенно «га». Но при произношении вслух наименование проговаривается полностью.
Выразим гектар в квадратных метрах.
1 га = 100 м · 100 м = 10 000 м 2
Теперь определим, сколько в одном гектаре аров.
Значит: 10 000 м 2 : 100 м 2 = 100 (ар)
1 км 2 = 1 км · 1 км = 1 000 м · 1 000 м = 1 000 000 м 2
Для простоты расчётов предлагаем вам в помощь таблицу переводов квадратных единиц.
Таблица переводов квадратных единиц
Данная таблица поможет перевести гектары в кв. метры, гектары в ары и наоборот.
Формула площади.
Формула площади необходима для определения площадь фигуры, которая является вещественнозначной функцией, определённой на некотором классе фигур евклидовой плоскости и удовлетворяющая 4м условиям:
Геометрическая фигура | Формула | Чертеж |
---|---|---|