Как находится расстояние между точками

Расстояние между двумя точками онлайн

С помощю этого онлайн калькулятора можно найти расстояние между точками по известным координатам этих точек. Дается решение с пояснениями. Для нахождения расстояния между точками задайте размерность (2-если задача рассматривается в двухмерном пространстве, 3- если задача рассматривается в трехмерном пространстве), введите координаты точек в ячейки и нажмите на кнопку «Решить». Теоретическую часть смотрите ниже.

Предупреждение

Расстояние между двумя точками на прямой

Пусть заданы на оси OX точки A с координатой xa и B с координатой xb (Рис.1). Найдем расстояние между точками A и B.

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Расстояние между точками A и В равно:

Поскольку расстояние от O до В равна xb, а расстояние от O до A равна xa, получим:

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

На рисунке 2 точки A и В находятся по разные стороны начала координат O. B этом случае рассояние между точками A и B равно:

Поскольку координата точки A отрицательна а координата точки B положительна, то (2) можно записать так:

На рисунке 3 точки A и В находятся c левой стороны начала координат O.

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

B этом случае рассояние между точками A и B равно:

Из формул (2),(4),(6) следует, что независимо от расположения точек отностительно начала координат рассояние этих точек равна разности координат этих точек, причем от большего значения вычитается меньшее (так как расстояние не может быть отрицательным числом).

Формулы (2),(4),(6) можно записать и так:

Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (7):

Расстояние между двумя точками на плоскости

Пусть на плоскости задана декартова прямоугольная система координат XOY и пусть на плоскости заданы точки A и B, где A имеет координаты (xa,ya), а B имеет координаты (xb,yb) (Рис.4).

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Учитывая результаты предыдующего параграфа, можем найти расстояние между точками A и M, а также расстояние между точками B и M:

ABM является прямоугольным треугольником, где AB гипотенуза, а AM и BM катеты. Тогда, исходя из теоремы Пифагора, имеем:

Тогда, учитывая (8), получим:

Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (9). Подставляя координаты точек A и B в формулу (9), получим:

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точкамиКак находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точкамиКак находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками,

Ответ: Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками.

Расстояние между двумя точками в пространстве

Рассмотрим в пространстве, в декартовой прямоугольной системе координат точки A и B, где A имеет координаты (xa,ya,za), а B имеет координаты (xb,yb,zb) (Рис.5).

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

AB является диагональю параллелепипеда, грани которго параллельны координатным плоскостьям и проходят через точки A и B. Но AB является гипотенузой прямоугольного треугольника AMB, а AM и BM являются катетами этого прямоугольного треугольника. Тогда, по теореме Пифагора, имеем:

Учитывая, что BM равно разности третьих координат точек B и A, получим:

Из предыдующего параграфа следует, что:

Но AM=A’B’. Тогда из (10) и (11) следует:

Пример 3. В пространстве задана декартова прямоугольная система координат XOY и точки \( \small A(x_a; \ y_a ;\ z_a)=A(5;1;0) \) и \( \small B(x_b, \ y_b, \ z_b)=B(-8,-4;21). \) Найти рассояние между этими точками.

Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (12). Подставляя координаты точек A и B в формулу (12), получим:

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точкамиКак находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точкамиКак находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками,

Ответ: Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками.

Источник

Онлайн калькулятор. Длина отрезка. Расстояние между точками.

Предлагаю вам воспользоваться онлайн калькулятором для вычисления расстояния между точками.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление расстояния между точками и закрепить пройденный материал.

Калькулятор для вычисления расстояния между двумя точками

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Выберите необходимую вам размерность:

Введите координаты точек.

Ввод данных в калькулятор для вычисления расстояния между точками

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления расстояния между точками

Теория. Расстояние между точками.

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.

В зависимости от размерности задачи расстояние между двумя точками можно найти используя следующие формулы:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Как найти расстояние между двумя точками?

Расстоянием между точками также называют прямую,
у которой одна из точек это начало, а соответственно
другая конец. Найти расстояние между этими
двумя точками, значит найти длину прямой,
связывающей точки.

Есть много разных способов найти расстояние между
двумя точками, но самый универсальный, на мой взгляд,
это найти расстояние взяв за основу Теорему Пифагора.
Исходя из этой теоремы, можно сказать, что в нашем
случае расстоянием(прямой), является гипотенуза,
а чем тогда являются точки, сейчас разберемся.

Формулировка великой Теоремы Пифагора звучит так:
в прямоугольном треугольнике квадрат гипотенузы равен
сумме квадратов катетов. Или же кратко, формулой:
\( c^2 = a^2 + b^2 \) где c — это гипотенуза, a и b — катеты.

Формулировка этой теоремы применяется почти всегда и везде,
где нужно найти расстояние от чего-то до чего-то. Сейчас, мы
используя эту теорему найдем расстояние между точками.

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

На рисунке 1 мы изобразили для наглядности
прямоугольный треугольник, с координатами
которые мы взяли для примера. На рисунке 2
тот же самый прямоугольный треугольник,
только без координат! Эти два прямоугольных
треугольника идентичные, поэтому вернемся
к Теореме Пифагора.

Заменяем длины катетов a и b, из Теоремы Пифагора,
на разность координат точек. ​Взгляните на формулу,
которая получилась:

Подставляем наши координаты:

В итоге получилось, что расстояние в нашем примере
равно 5(корень из 25). Как видите все просто, и вы можете
смело применять эту формулу, решая не только задачи,
но и на практике, находя расстояние зная только две точки.

Источник

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Формула расстояния между точками на координатной плоскости является основным инструментом, применяемым при решении ряда задач в двумерном пространстве.

Система координат

Прежде чем говорить о расстоянии между точками по координатам, следует ввести систему отчета, в которой каждый геометрический объект можно будет однозначно определять. Для этой цели часто используют декартову систему координат. Она представляет собой взаимно перпендикулярные прямые, на каждой из которых отмечены единичные отрезки. Именно в них определяется положение тел в пространстве, на плоскости или на прямой линии.

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Для названных трех случаев декартова система координат отличается количеством осей:

Единичные отрезки на координатных осях в общем случае могут иметь разную длину.

Однако ввиду симметричности пространства и для удобства выполнения практических расчетов применяют, как правило, единичные отрезки равной длины. Каждому из них соответствует единичный вектор.

Понятие о векторе

Чтобы уметь вычислять расстояние от точки до точки по координатам, удобно пользоваться понятием вектора.

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Из школьного курса геометрии известно, что под ним принято понимать отрезок, имеющий некоторое определенное направление. Обозначают его в виде прямой линии конечной длины, на конце которой изображена стрелка.

Пользу использования указанного геометрического объекта трудно переоценить. Например, в физике все величины делятся на 2 большие группы:

К первым относятся масса, электрический заряд, энергия и другие. Вторая группа более обширная. Здесь следует назвать скорость, ускорение, силу тока, напряженности магнитного и электрического полей, силу любой природы и многие другие.

Характеристики объекта

Как любой геометрический объект, вектор обладает набором математических свойств, которые используются при решении задач. Основные из них:

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Для всех свойств существуют определяющие их правила. Например, при осуществлении вычитания вектора a- из b- необходимо соединить концы этих объектов отрезком и направить его к концу a-, тогда получается результирующий вектор разницы.

Умножение a- и b- векторным способом является полезной операцией при определении площадей и объемов фигур. Для ее выполнения следует уметь работать с матрицами второго и третьего порядка, в частности, знать, как рассчитывается детерминант (определитель).

Универсальный способ

Речь идет о координатном представлении нульмерных, одномерных, двумерных и трехмерных геометрических фигур. Параметры точек, треугольников, квадратов, прямых, плоскостей и других более сложных объектов могут быть однозначно выражены в виде наборов чисел, привязанных к соответствующей координатной системе. Поскольку существует задача определения расстояния от точки до точки по координатам, имеет смысл рассмотреть только указанный одномерный объект и вектор.

Точка на плоскости

В общем случае удобно обозначить произвольную точку Q (x0; y0).

Направленный отрезок в двумерном пространстве

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

На плоскости и в трехмерном пространстве всего 2 точки однозначно определяют направленный отрезок. Если его начало переместить в пересечение осей x и y, его конец легко можно найти, вычитая соответствующие координаты точек друг из друга. Следующий простой пример демонстрирует сказанное.

Даны точки A (x1; y1), B (x2; y2), тогда AB- будет иметь координаты:

Вторая точка показывает место расположения конца AB-.

Формула дистанции

Имея полученные представления и знания о свойствах точек и векторов, можно перейти к вопросу нахождения формулы расстояния. Согласно геометрическому определению, под дистанцией между двумя точками понимают длину отрезка, который их соединяет. Эта величина также равна модулю вектора, построенного на нульмерных объектах.

Длину направленного отрезка на плоскости определить просто: необходимо возвести в квадрат каждую его координату, сложить полученные значения, и взять квадратный корень из результирующей суммы. Для вектора a- (x; y) длина будет равна следующей величине:

Возведение суммы в степень 0,5 эквивалентно взятию из нее квадратного корня.

Поскольку определение координат вектора по соответствующим значениям точек известно, можно получить следующую простую формулу для A (x1; y1) и B (x2; y2):

В трехмерном пространстве соответствующее выражение будет иметь подобную форму, только добавится третья координата z.

Расстояние между Q и прямой

Полученные знания можно с легкостью применять для решения разнообразных задач по геометрии. Часто приходится находить дистанцию между точкой и прямой. Определить эту величину можно, если знать направляющий вектор прямой. Предположим, что он имеет следующие координаты: a- (x1; y1). Прямая проходит через A (x2; y2). Точка задается так: Q (x0; y0).

В параметрическом виде прямая записывается следующим образом:

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Здесь t — параметр, который может принимать любое действительное число. Это выражение позволяет записать равенство (1):

Пусть точка P (x;y) является проекцией Q (x0;y0) на прямую, тогда расстояние PQ является искомой дистанцией, которую следует найти по условию задачи. Поскольку вектора PQ- и a- перпендикулярны друг другу, их скалярное произведение будет равно нулю (угол между векторами равен 90 градусов, его косинус равен нулю). Исходя из этих рассуждений, можно записать выражение (2):

Поскольку имеющиеся равенства (1) и (2) содержат 2 неизвестные переменные, объединение их в систему и решение ее позволит определить точку P (x;y). Зная ее координаты и используя формулу дистанции между двумя точками на плоскости, можно получить искомое расстояние PQ.

Пример задачи

Применить полученные знания поможет простая геометрическая проблема. Имеется прямая, которая задана на плоскости в виде следующего общего выражения:

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Пусть проекцией точки Q на прямую будет нульмерный объект P (x;y). Координаты P должны удовлетворять записанному уравнению.

Чтобы определить направляющий вектор, достаточно взять 2 любые точки на прямой. Подставляя в выражение произвольные значения x, можно определить эти точки A, B и вместе с ними направляющий вектор AB-:

Вектор QP-, который пересекает прямую под прямым углом, должен подчиняться следующему уравнению (свойство скалярного произведения):

В это выражение нужно подставить значение y из уравнения прямой.

Получается:

Рассчитанное значение округлено до сотых долей и выражается в единицах единичных векторов координатной системы.

При решении подобных задач для сокращения последующих вычислений рекомендуется проверять принадлежность точки прямой, для чего следует подставить координаты в уравнение. Если этот факт подтверждается, искомое расстояние равно нулю.

Углы треугольника

Польза от использования формулы дистанции между точками на плоскости наглядно показывается на примере решения задач на нахождение углов фигур. Пусть нужно определить все углы треугольника, который построен на вершинах A (x1;y1), B (x2;y2), C (x3;y3).

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

На первый взгляд сложная задача решается легко, если вспомнить о понятии векторного произведения. Например, для векторов AB- и AC- записывается оно так:

Произведение [AB-*AC-] является вектором, который находится как детерминант матрицы третьего порядка. Его модуль, а также длины |AB-| и |AC-| вычисляются по формуле расстояния между двумя точками.

Чтобы определить угол при вершине A треугольника, остается взять функцию арксинуса от отношения векторного произведения к произведению длин сторон AB и AC.

Источник

Расстояние между точками на координатной прямой

Расстояние между двумя точками на координатной прямой равно модулю разности их координат.

Формула расстояния между точками на координатной прямой:

где A и B — это произвольные точки, расстояние между которыми надо найти, то есть, найти длину отрезка AB, a и b — координаты точек.

Следовательно, чтобы найти расстояние между точками координатной прямой надо из координаты одной точки вычесть координату другой точки.

Пример 1. Найти расстояние между точками L(-3) и M(5), отмеченными на координатной прямой.

Решение. Чтобы найти расстояние между точками L и M надо из координаты точки L вычесть координату точки M или наоборот, а в качестве ответа взять модуль полученного результата:

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Ответ. Расстояние между точками L и M равно 8.

Пример 2. Найдите координаты середины отрезка AB, если A(-5) и B(5).

Как находится расстояние между точками. Смотреть фото Как находится расстояние между точками. Смотреть картинку Как находится расстояние между точками. Картинка про Как находится расстояние между точками. Фото Как находится расстояние между точками

Решение. Обозначим середину отрезка точкой C. Так как C — середина отрезка AB, то |AC| = |CB|. Значит, чтобы найти координату точки C, надо сначала вычислить длину отрезка AB и разделить её на 2, то есть, на две равные части AC и CB:

10 : 2 = 5, значит |AC| = |CB| = 5.

Как видно из чертежа, чтобы найти координату середины отрезка, надо половину длины отрезка либо прибавить к точке с наименьшей координатой, либо отнять от точки с наибольшей координатой:

Ответ. Координата середины отрезка C(0).

Пример 3. Найдите координату точки C, которая является серединой отрезка с концами в точках A(7) и B(25).

Ответ. Координата точки C — 16.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *