Как находится вероятность в математике

Как решать задачи на вероятность?

Вероятность. Что это?

Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов.

Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Алгоритм решения задач на вероятность

Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике.

А теперь не будем ходить вокруг да около, и сформулируем схему, по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.

Как решать задачи: классическая вероятность

Пример 1. В группе из 30 студентов на контрольной работе 6 студентов получили «5», 10 студентов – «4», 9 студентов – «3», остальные – «2». Найти вероятность того, что 3 студента, вызванные к доске, получили по контрольной работе «2».

Начинаем решение по пунктам, описанным выше.

Некогда решать? Найди решенную задачу

Готовые решения задач по любым разделам теории вероятностей, более 10000 примеров! Найди свою задачу:

Как решать задачи: формула Бернулли

Пример 2. Какова вероятность того, что при 8 бросаниях монеты герб выпадет 5 раз?

Снова по схеме решения задач на вероятность рассматриваем данную задачу:

И это все? Конечно, нет.

Выше мы упомянули только малую часть тем и формул теории вероятностей, для более подробного изучения вы можете посмотреть учебник онлайн на данном сайте (или скачать классические учебники по ТВ), ознакомиться со статьями по решению вероятностных задач, бесплатными примерами, воспользоваться онлайн калькуляторами. Удачи!

Источник

Теория вероятности формула и примеры для чайников, задачи с решениями, как найти классическую вероятность в математике, как обозначается и в чем выражается вероятность

В высшей математике существует раздел, изучающий статистику. По сути, это теоретическая база. Направление изучает закономерности и случайные явления, систематизирует данные для обоснования принятых решений. Основой науки является теория вероятности, чьи формулы используются для предположения о свершении того или иного события. Существует и алгоритм, с помощью которого решаются все задачи.

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Развитие науки

Изучение вероятности наступления того или иного события берёт своё начало со Средних веков. Первоначально наблюдаемые закономерности не имели математического описания и основывались на различных эмпирических фактах. Ранние работы были непосредственно связаны с азартными играми. Французские учёные Паскаль и Ферма пытались выявить и рассчитать закономерности при бросании костей.

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Независимо от них этим вопросом занимался и голландский физик Гюйгенс. В своей работе он оперировал такими понятиями, как величина шанса, математическое ожидание, цена случайности. Он первый, кто попробовал применить теоремы сложения и умножения в описание вероятности.

Фундаментальное значение для развития науки имели труды Бернулли, Байеса, Лапласа и Пуассона. Их стараниями были сформулированы и доказаны предельные теоремы, предложены первые формулы и примеры. В теории вероятности начали использовать анализ ошибочного наблюдения. Но лишь Карл Гаусс детально смог разобраться в нормальном распределении случайной величины.

В XIX веке русские и европейские учёные смогли доказать сделанные ранее предложения. В первую очередь это касалось закона больших чисел и центральной предельной теоремы. Формальная система для описания теории была принята в 1933 году. Предложил её академик СССР Андрей Колмогоров. Руководствуясь идеями теории множеств, меры и интегрирования, он смог систематизировать аксиомы и с их помощью описать классическую теорию вероятности. На основании его работ была создана новая теория — случайных процессов.

В его систему входит:

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Объекты, удовлетворяющие системе, были названы полем вероятности (вероятностным пространством). Было принято, что аксиомы не могут противоречить друг другу. Аксиоматизация позволила привести все предположения к строгому математическому виду и стала восприниматься как один из разделов математического вычисления.

Сущность предмета

Предметом изучения науки являются закономерности, появляющиеся в случайных событиях, результат которых нельзя установить заранее. Но не все эксперименты можно изучать с помощью теории, а лишь те, что повторяются при одних и тех же условиях.

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Существует понятие «статистической устойчивости». Если существует некоторое событие «А», которое может наступить в результате события или не произойти, то часть экспериментов должна стабилизироваться. При этом с увеличением числа экспериментов вероятность повторения стремится к определённому числу Р(А). Оно и является характеристикой, определяющей степень возможности наступления события «А».

Объяснить основы теории вероятности для чайников можно с помощью классических понятий:

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Основополагающими формулами являются выражения Байеса и Бернулли.

Алгоритм решения

Теория вероятностей используется, когда необходимо сделать прогноз на выпадение того или иного шанса в эксперименте. Случайность является основным понятием предмета. Она обозначает явление, для которого невозможно точно вычислить периодичность наступления, поэтому в задачах находят именно число возможностей. По своей сути вероятность — функция, способная принимать 3 значения:

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Чтобы высчитать случайность, рекомендуется придерживаться разработанного алгоритма. Следует внимательно изучить задание и определить, вероятность чего необходимо вычислить, а также события, от которых случайность будет изменяться. Определив схему задачи, подобрать формулу и, подставив в неё все имеющиеся данные, рассчитать шанс. Чтобы правильно определиться с нужной схемой, необходимо знать о количестве экспериментов, существовании между ними зависимости, возможности применения нескольких гипотез.

Для понятия принципа нахождения случайности часто предлагается к решению следующая задача. В закрытом ящике лежит 6 разноцветных перемешанных между собой шаров. Из них 2 красного цвета, 3 зелёного и 1 белый. Нужно посчитать, насколько шансов достать белый шар меньше, чем цветной.

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Случайность доставания цветного шара обозначают как событие «А». Согласно определению вероятность «А» определяется отношением благоприятствующих шансов к общему числу исходов. Существует 6 различных возможностей вытянуть шар, из них 5 относятся к благоприятным, поэтому эксперимент покажет, что вероятность достать из ящика цветной шар будет составлять P = 5 / 6 = 0,83(3). Это и есть показатель оценки степени случайности.

Таким способом можно узнать различную вероятность любого исхода, не прибегая к собиранию статистики и её анализу, то есть решить задачу математически, как, например, следующую. В таксопарке используется 2 синих, 9 красных и 4 чёрных машины. Нужно определить, какая существует возможность приезда по вызову красного автомобиля. Решение простое. Так как всего имеется 15 машин, вероятность приезда именно красной составит Р = 9/15 или 0,6.

Теорема Муавра — Лапласа

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Это предельное определение, предложенное Лапласом в 1812 году. В основе теоремы используется формула Бернулли, но применяется она к довольно большому количеству экспериментов. Суть её в следующем: если при независимых экспериментах n существует вероятность свершения случайного события N равная нулю или единице, при этом число испытаний равняется m, искомое значение близко к интегральной функции Лапласа.

Стандартные значения, соответствующие нормальному распределению, сведены в статистические таблицы. Взять их можно в решебниках задач по теории. Под приведёнными значениями понимается площадь кривой от нуля до числа x. Например, если придумать какую-либо величину площади между числами 0 и 2,34, согласно таблице она составит 0,49036.

При рассмотрении свершения m событий в n экспериментах существует вероятность, заключённая в определённом отрезке между значениями a и b, поэтому выражение для нахождения можно найти из формулы: Р(m) = (n! * pm * qn-m) / m!(n-m)!. Уравнение требует сложных и громоздких расчётов, поэтому, чтобы найти вероятность, в математике из формулы используют асимптотическое распределение. Но возможно это только при условии, что Р(m) неизменное, а число экспериментов будет стремиться к бесконечности.

Реальная формула, описывающая теорему сложна, поэтому используется приближённая:

Р(m) = 1 / ((2p*n*p*q)1/2) exp (-X2m/2).

Использовать её рекомендуют только при значениях событий больше 20, а экспериментов 100. Например, брак выпускаемых изделий составляет 15%. Поступает товар в упаковках по 100 штук. Нужно найти вероятность, что случайно взятая коробка будет укомплектована 13 бракованными изделиями. При этом число товара низкого качества в упаковке не превысит 20.

За испытание необходимо принять изготовление. Вероятность появления события, которое необходимо искать составит p = 0,15. Далее, находится случайность: n * p = 15 и n * p * q = 12,75. Исходные данные подставляют в формулу Лапласа:

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Таким образом, примерно 9,5% упаковок от общего количества содержат 13 товаров плохого качества, а в 92% случаях число изделий с браком не превышает 20.

Сочетание взаимных событий

При рассмотрении задач может возникнуть вопрос, как различные события могут зависеть друг от друга. Для характеристики их взаимосвязи вводится понятие условная вероятность. Например, имеются 2 случайных исхода одного эксперимента «А» и «В». Тогда условной вероятностью первого события «А» при условии, что второе произошло, называется отношение P (AB) / P (B).

Необходимо определить, с какой вероятностью в семье с ребёнком-девочкой родится мальчик. За вероятность появления в семье двух мальчиков нужно взять «А», а за ребёнка противоположного пола событие «В». Существует 4 возможных исхода, поэтому справедливо будет записать: P (AB) = 1/4, P(B) = 3/4. Подставив эти значения в формулу можно рассчитать вероятность: P (A/B) = (1/4) / (3/4) = 0,3. Первый исход считается независимым от второго, если наступление события «В» не оказывает влияние.

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Если же события взаимны, они влияют друг на друга. В этом случае используется их перемножение: P(AB) = P(A) *PB (А). Например, в пачке 26 лотерей, из которых 3 призовых. Нужно определить шанс, что первый билет будет призовой и вероятность, что второй билет также будет с выигрышем, но при условии, что первый билет уже убрали.

Для решения задачи вначале нужно найти шанс, что первый билет будет с выигрышем: P (A) = 3/26 = 0,115. Затем рассчитать вероятность двух выигрышей подряд: P(AB) = P(A) * P(B) = (3/26) * (2/25) = 0,009.

Это довольно простые задачи, но существуют задания, для решения которых понадобится применять несколько формул. Такой расчёт вероятности наступления того или иного события может быть трудным, требующим повышенного внимания. Для облегчения вычислений существуют специальные интернет-порталы. Они предлагают рассчитать исход события даже тем, кто и вовсе не разбирается в теории. Например, allcalc.ru, kontrolnaya-rabota.ru, matburo.ru, math.semestr.ru.

На этих сайтах от пользователей требуется лишь заполнить предлагаемые формы исходными данными и нажать кнопку «Рассчитать». Все калькуляторы совмещают в себе быстроту нахождения ответа и ознакомление с подробным описанием решения.

Источник

Теория вероятностей, формулы и примеры

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.

Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие.

Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:

Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.

Формулы по теории вероятности

Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.

Случайные события. Основные формулы комбинаторики

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Классическое определение вероятности

Вероятностью события A в некотором испытании называют отношение:

P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A

Таким образом, вероятность любого события удовлетворяет двойному неравенству:

Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Геометрическое определение вероятности

Геометрическая вероятность события А определяется отношением:

P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно

Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.

Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?

У нас есть отличные курсы по математике для учеников с 1 по 11 классы — приглашаем на вводный урок!

Сложение и умножение вероятностей

Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:

P(A + B) = P(A) + P(B)

Эта теорема справедлива для любого числа несовместных событий:

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Если случайные события A1, A2. An образуют полную группу несовместных событий, то справедливо равенство:

Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.

Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:

P(A + B) = P(A) + P(B) − P(AB)

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:

P(AB) = P(A) * P(B)

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.

Найдем вероятности того, что формула содержится:

А — формула содержится в первом справочнике;

В — формула содержится во втором справочнике;

С — формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.

Формула полной вероятности и формула Байеса

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

По теореме умножения вероятностей:

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Аналогично, для остальных гипотез:

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.

Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Формула Бернулли

При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.

Биномиальное распределение — распределение числа успехов (появлений события).

Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.

Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:
Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂

Наивероятнейшее число успехов

Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:

Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.

Формула Пуассона

При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97 999 вычислить весьма затруднительно.

В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Здесь λ = np обозначает среднее число появлений события в n испытаниях.

Эта формула дает удовлетворительное приближение для p ≤ 0,1 и np ≤10.

События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).

При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.

Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

P1000(3) = λ 3 /3! * e −λ = 2 3 /3! * e −2 ≈ 0,18.

Ответ: ориентировочно 0,18.

Теоремы Муавра-Лапласа

Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.

Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Как находится вероятность в математике. Смотреть фото Как находится вероятность в математике. Смотреть картинку Как находится вероятность в математике. Картинка про Как находится вероятность в математике. Фото Как находится вероятность в математике

Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:

Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *