Как нужно раскладывать на множители

Разложение многочлена на множители

Разложить многочлен на множители означает представить его в виде произведения двух или нескольких многочленов.

Примером разложения многочлена на множители является вынесение общего множителя за скобки, поскольку исходный многочлен обращается в произведение двух сомножителей, один из которых является одночленом, а другой многочленом.

Разложение многочлена на множители способом вынесения общего множителя за скобки

При вынесении общего множителя за скобки образуется произведение из двух сомножителей, один из которых является одночленом, а другой многочленом. Например:

В рамках изучения многочленов, одночлен принято считать многочленом, состоящим из одного члена. Поэтому, когда в многочлене выносится за скобки общий множитель, то говорят что исходный многочлен представлен в виде произведения многочленов.

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Разложение многочлена на множители способом группировки

Некоторые многочлены содержат группу членов, имеющих общий множитель. Такие группы можно заключать в скобки и далее выносить общий множитель за эти скобки. В результате получается разложение исходного многочлена на множители, которое называют разложением на множители способом группировки.

Рассмотрим следующий многочлен:

Далее в многочлене ax + ay + 3 x + 3 y члены 3x и 3y имеют общий множитель 3. Выпишем эти члены и тоже заключим их в скобки:

Теперь соединим выражения (ax + ay) и (3x + 3y) знаком «плюс»

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Далее замечаем, что двучлен (x + y) является общим множителем. Вынесем его за скобки. Продолжаем решение в исходном примере. В результате получим:

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Запишем решение покороче, не расписывая подробно, как каждый член был разделен на общий множитель. Тогда решение получится более компактным:

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Пример 2. Разложить многочлен 9x + ax − 9y − ay на множители способом группировки.

В первой группе (9x − 9y) вынесем за скобки общий множитель 9. Во второй группе (ax − ay) вынесем за скобки за скобки общий множитель a

Далее вынесем за скобки двучлен (x − y)

Пример 3. Разложить многочлен ab − 3b + b 2 − 3a на множители способом группировки.

Во втором произведении b(−3 + b) в сомножителе (−3 + b) изменим порядок следования членов. Тогда получим b(b − 3)

Теперь вынесем за скобки общий множитель (b − 3)

Пример 4. Разложить многочлен x 2 y + x + xy 2 + y + 2xy + 2 на множители способом группировки.

Сгруппируем первый член многочлена со вторым, третий с четвёртым, пятый с шестым:

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Далее замечаем, что многочлен (xy + 1) является общим множителем. Вынесем его за скобки:

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Разложение многочлена на множители по формуле квадрата суммы двух выражений

Формулы сокращённого умножения, которые мы рассматривали в прошлом уроке, можно применять для разложения многочленов на множители.

Вспомним, как выглядит формула квадрата суммы двух выражений:

Поменяем местами левую и правую часть, получим:

Левая часть этого равенства является многочленом, а правая часть — произведением многочленов, поскольку выражение (a + b) 2 представляет собой перемножение двух сомножителей, каждый из которых равен многочлену (a + b).

Пример 1. Разложить на множители многочлен 4x 2 + 12xy + 9y 2

Полностью решение можно записать так:

Пример 2. Разложить на множители многочлен x 2 + 12x + 36

Разложение многочлена на множители по формуле квадрата разности двух выражений

Как и по формуле квадрата суммы двух выражений, многочлен можно разложить на множители по формуле квадрата разности двух выражений.

Формула квадрата разности двух выражений выглядит так:

Если в этой формуле поменять местами левую и правую часть, то получим:

Поскольку правая часть это произведение двух сомножителей, каждый из которых равен (a − b), то многочлен вида a 2 − 2ab + b 2 можно разложить на множители (a − b) и (a − b).

Пример 1. Разложить на множители многочлен 9x 2 − 12xy + 4y 2

Полностью решение можно записать так:

Пример 2. Разложить на множители многочлен x 2 − 4x + 4

Воспользуемся формулой квадрата разности двух выражений:

Разложение многочлена на множители по формуле куба суммы двух выражений

Вспомним, как выглядит формула куба суммы двух выражений:

Поменяем местами левую и правую часть, получим:

Левая часть этого равенства является многочленом, а правая часть — произведением многочленов, поскольку выражение (a + b) 3 представляет собой перемножение трёх сомножителей, каждый из которых равен многочлену (a + b).

Пример 1. Разложить на множители многочлен m 3 + 6m 2 n + 12mn 2 + 8n 3

Прежде чем применять формулу куба суммы, следует проанализировать данный многочлен. А именно, убедиться что перед нами действительно куб суммы двух выражений.

Первый член данного многочлена является результатом возведения в куб одночлена m

Последний член 8n 3 является результатом возведения в куб одночлена 2n

Второй член 6m 2 n является утроенным произведением квадрата первого выражения m и последнего 2n

Третий член 12mn 2 является утроенным произведением первого выражения m и квадрата последнего выражения 2n

Пример 2. Разложить на множители многочлен 125x 3 + 75x 2 + 15x + 1

Первый член данного многочлена является результатом возведения в куб одночлена 5x

Последний член 1 является результатом возведения в куб одночлена 1

Второй член 75x 2 является утроенным произведением квадрата первого выражения 5x и последнего 1

Третий член 15x является утроенным произведением первого выражения 5x и квадрата второго выражения 1

Разложение многочлена на множители по формуле куба разности двух выражений

Как и по формуле куба суммы двух выражений, многочлен можно разложить на множители по формуле куба разности двух выражений.

Вспомним, как выглядит формула куба разности двух выражений:

Если в этой формуле поменять местами левую и правую часть, то получим:

Поскольку правая часть это произведение трёх сомножителей, каждый из которых равен (a − b), то многочлен вида a 3 − 3a 2 b + 3ab 2 − b 3 можно разложить на множители (a − b), (a − b) и (a − b).

Пример 1. Разложить на множители многочлен 64 − 96x + 48x 2 − 8x 3

Прежде чем применять формулу куба разности, следует проанализировать данный многочлен. А именно, убедиться что перед нами действительно куб разности двух выражений.

Первый член данного многочлена является результатом возведения в куб одночлена 4

Последний член 8x 3 является результатом возведения в куб одночлена 2x

Второй член 96x является утроенным произведением квадрата первого выражения 4 и последнего 2x

Третий член 48x 2 является утроенным произведением первого выражения 4 и квадрата второго выражения 2x

3 × 4 × (2x) 2 = 3 × 4 × 4x 2 = 48x 2

Пример 2. Разложить на множители многочлен 27 − 135x + 225x 2 − 125x 3

Первый член данного многочлена является результатом возведения в куб одночлена 3

Последний член 125 является результатом возведения в куб одночлена 5x

Второй член 135x является утроенным произведением квадрата первого выражения 3 и последнего 5x

Третий член 225x 2 является утроенным произведением первого выражения 3 и квадрата второго выражения 5x

3 × 3 × (5x) 2 = 3 × 3 × 25x 2 = 225x 2

Разложение многочлена на множители по формуле разности квадратов двух выражений

Вспомним, как выглядит формула умножения разности двух выражений на их сумму:

Если в этой формуле поменять местами левую и правую часть, то получим:

Эту формулу называют разностью квадратов. Она позволяет разложить выражение вида a 2 − b 2 на множители (a − b) и (a + b).

Пример 1. Разложить на множители многочлен 16x 2 − 25y 2

Первый член 16x 2 является результатом возведения в квадрат одночлена 4x

Второй член 25y 2 является результатом возведения в квадрат одночлена 5y

Полностью решение можно записать так:

Пример 2. Разложить на множители многочлен x 2 − y 2

Чаще всего члены, из которых состоит исходная разность, являются результатами возведения во вторую степень каких-нибудь одночленов. Чтобы узнать чему в таком случае равны a и b, нужно как в первом примере представить члены исходной разности в виде одночленов возведённых в квадрат.

Полностью решение можно записать так:

Несмотря на простоту разложения по формуле разности квадратов, частые ошибки приходятся именно на эти задачи. Чтобы убедиться, что задача решена правильно, не мешает выполнить умножение в получившемся разложении. Если задача решена правильно, то должен получиться изначальный многочлен.

Проверим умножением данный пример. У нас должен получиться многочлен 4x 4 − 9y 6

Пример 4. Разложить на множители многочлен 81 − 64

Представим члены исходной разности в виде одночленов возведенных в квадрат. Далее воспользуемся формулой разности квадратов:

81 − 64 = 9 2 − 8 2 = (9 − 8)(9 + 8)

Разложение многочлена на множители по формуле сумме кубов двух выражений

Мы помним, что произведение суммы двух выражений и неполного квадрата их разности равно сумме кубов этих выражений:

Если в этой формуле поменять местами левую и правую часть, то получим формулу, называемую суммой кубов двух выражений:

Пример 1. Разложить на множители многочлен 27x 3 + 64y 3

Представим члены 27x 3 и 64y 3 в виде одночленов, возведённых в куб

Пример 2. Разложить на множители многочлен 125 + 8

Представим члены 125 и 8 в виде одночленов, возведённых в куб:

Далее воспользуемся формулой суммы кубов:

125 + 8 = 5 3 + 2 3 = (5 + 2)(25 − 10 + 4)

Разложение многочлена на множители по формуле разности кубов двух выражений

Произведение разности двух выражений и неполного квадрата их суммы равно разности кубов этих выражений:

Если в этой формуле поменять местами левую и правую часть, то получим формулу, называемую разностью кубов двух выражений:

Пример 1. Разложить на множители многочлен 64x 3 − 27y 3

Представим члены 64x 3 и 27y 3 в виде одночленов, возведённых в куб:

Пример 2. Разложить на множители многочлен 64 − 27

Представим члены 64 и 27 в виде одночленов, возведённых в куб:

64 − 27 = 4 3 − 3 3 = (4 − 3)(16 + 12 + 9)

Пример 3. Разложить на множители многочлен 125x 3 − 1

Представим члены 125x 3 и 1 в виде одночленов, возведённых в куб:

Разложение многочлена на множители различными способами

К некоторым многочленам можно применять различные способы разложения на множители. Например, к одному многочлену можно применить способ вынесения общего за скобки, а затем воспользоваться одной из формул сокращённого умножения.

Пример 1. Разложить на множители многочлен ax 2 − ay 2

При этом в скобках образовался многочлен, который является разностью квадратов. Применив формулу разности квадратов. Тогда получим:

Пример 2. Разложить на множители многочлен 3x 2 + 6xy + 3y 2

Вынесем за скобки общий множитель 3

Источник

Разложение многочлена способом группировки

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Основные понятия

Мы знаем, что слово «множитель» происходит от слова «умножать».

Возьмем, например, число 12. Чтобы разложить его на множители, нужно написать его по-другому, а именно в виде «произведения» множителей.

Число 12 можно получить, если умножить 2 на 6. А 6 можно представить, как произведение 2 и 3. Вот так:

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Так выглядит пошаговое разложение на множители. Числа, которые обведены в кружок на картинке — это множители, которые дальше разложить уже нельзя.

Разложение многочлена на множители — это преобразование многочлена в произведение, которое равно данному многочлену.

5 способов разложения многочлена на множители

Способ группировки множителей

Разложение на множители методом группировки возможно, когда многочлены не имеют общего множителя для всех членов многочлена.

Этот способ применяется в тех случаях, когда многочлен удается представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку. И тогда исходный многочлен будет представлен в виде произведения, что значительно облегчает задачу.

Разложить на множители методом группировки можно в три этапа:

Объединить члены многочлена в группы можно по-разному. И не всегда группировка может быть удачной для последующего разложения на множители. В таком случае нужно продолжить эксперимент и попробовать объединить в группы другие члены многочлена.

Чтобы понять эти сложные выражения, применим правило группировки множителей при решении примеров. Рассмотрим два способа.

Заметим, что в первой группе повторяется p, а во второй — d.

Вынесем в первой группе общий множитель p, а во второй общий множитель d.

Вынесем его за скобки:

Группировка множителей выполнена.

Заметим, что в первой группе повторяется u, а во второй — b.

Вынесем в первой группе общий множитель u, а во второй общий множитель b.

Заметим, что общий множитель (p + d).

Вынесем его за скобки:

Группировка множителей выполнена.

От перестановки мест множителей произведение не меняется, поэтому оба ответа верны:

Вот так работает алгоритм разложения многочлена на множители способом группировки. Продолжим практиковаться на примерах.

Иногда для вынесения общего многочлена нужно заменить все знаки одночленов в скобках на противоположные. Для этого за скобки выносится знак минус, а в скобках у всех одночленов меняем знаки на противоположные.

Проверим как это на следующем примере.

Курсы ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Источник

Разложение на множители что значит и как раскладывать на простые множители число, корни, трехчлен, квадратное уравнение, примеры и решения, правило и алгоритм

При решении математических уравнений часто приходится преобразовывать равенства для упрощения выражений. Делается это с помощью разложения на множители. Приводить к простому виду можно как многочлены, так и одночлены, при этом необязательно знать даже формулы. Для решения сложных заданий можно воспользоваться онлайн-калькулятором. Пользоваться им несложно, главное, иметь чёткое условие задачи и доступ к интернету.

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Термины и понятия

Под разложением в математике понимается операция, которую выполняют для превращения сложного неудобного для вычисления примера в простой. В учебниках и литературе такое преобразование выражений называется тождественным, то есть без изменения сути задания.

Из слова «множители» можно понять, что в превращении используется умножение. Зная, как разложить полином на простые числа, можно быстро решать задачи на действия с корнями и сложными дробями. Например, выражение (3*h*y + 9*y — 8*h — 24) * (3*h — 8) после упрощения примет вид: h + 3 — и быстро решается в уме.

В математике все алгебраические выражения могут быть:

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Числа часто записывают в так называемом стандартном виде. Например, 296,8 = 2,968 * 102. То есть используется формула приведения: a * 10r, где 1≤а Простое разложение

На уроках математики ученикам предлагают разложить на простые множители числа с помощью столбика (двух колонок). Делается это по следующему алгоритму. Исходное число проверяют на возможность деления без остатка на два. Если делится, то рисуют две колонки, в правую вписывают двойку, а в левую число, получившееся после деления на него исходного. В обратном случае вместо двойки используют цифру три. Далее действия повторяют для числа, находящегося уже в правой колонке. Выполняют деление до тех пор, пока в левой колонке не останется единица. Например, число 1176 можно разложить следующим образом:

1176 | 2 (1176 / 2 = 588).

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

588 | 2 (588 / 2 = 294).

294 | 2 (294 / 2 = 147).

1176 = 2 * 2 * 2 * 3 * 7 * 7 = 23 * 3 * 72.

Для того чтобы понять алгоритм, лучше рассмотреть ещё несколько интересных примеров:

Используя метод, можно представить любое число как произведение простых множителей, но с условием, что изначально оно будет кратным двум или трём. В ином же случае простые множители подобрать не получится, как, например, для числа 247, которое можно заменить произведением чисел 13 и 19.

Вынесение коэффициента

Это довольно простой способ разложения многочлена. Выполняют его с помощью перестановки общего множителя за скобку, в которой остаётся сумма выражения. То есть для этого метода необходимо представить искомое в виде произведения нескольких полиномов.

Чтобы выделить общий множитель, следует выполнить:

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Например, пусть дано выражение: 3у2 — 3y + 6 r*y. Согласно правилу, необходимо найти число, на которое без остатка можно разделить каждый из трёх коэффициентов многочлена. Для рассматриваемого примера это будет цифра 3.

Затем определить буквенный множитель, имеющийся в каждом члене выражения. Найденную цифру и повторяющееся неизвестное с наименьшей степенью записать за скобкой. Теперь нужно каждый одночлен разделить на вынесенное значение, а полученный результат записать в скобках: 3y * (y — 1 + 2r). Для проверки правильности действий нужно просто раскрыть скобки путём умножения каждого члена на вынесенный множитель.

Формулы умножения

Довольно часто для упрощения расчётов используют формулы сокращённого умножения. Всего существует семь выражений, которые необходимо выучить. Найти их можно в таблицах любого учебника по алгебре за седьмой класс. Смысл этих теорем в следующем:

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Все эти формулы умножения можно использовать также в обратную сторону, то есть собирать многочлен. Например, для решения примеров типа: «квадратный трёхчлен разложен на множители, найдите а». Если понять смысл этих формул, то запомнить их наизусть будет довольно легко.

Метод группировки

Пожалуй, самый распространённый способ разложения на множители. Его удобно применять для упрощения квадратных уравнений без поиска корней. Разложение этим методом выполняют в следующей последовательности действий:

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Выполнять группировку можно по-разному, но в итоге обязательно должен остаться общий многочлен. Например, выражение 48 * h * e 2 + 32 * h * q — 15 * e 2 — 10 * q2 возможно решить двумя способами.

Для того чтобы вынести многочлен за скобку, может понадобиться инвертировать все знаки. Следует помнить, что при выносе минуса у всех одночленов, оставшихся под скобкой, знак изменится на противоположный.

Выделение квадрата

По сути, выделение общего квадрата соответствует преобразованию, при котором трёхчлен представляют в виде (k + e)2 или (k — e)2. Метод используется для решения биквадратных уравнений. Для выделения полного квадрата при разложении многочлена на множители применяют две формулы:

Например, нужно упростить дробь: (k4 + 4 * e4) / (k4 + 2 * e2 + 2 * k * e). Необходимо разложить числитель, используя формулы для полного квадрата: (k4 + 4 * e4) = (k4 + 4 * e2 * k2 + 4 * e 4). Значит, если отнять от многочлена 4 * k2 * e2, то получится уравнение: (k2 + 2 * e2) * 2 − 4 * k2 * e2. Используя формулу умножения квадратов, верно будет записать: (k2 + 2 e 2 − 2 * k * e) * (k2 + 2 e 2 + 2 * k * e).

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Заменив полученным выражением числитель, можно будет его часть взаимно сократить со знаменателем. В итоге получится простое выражение: h2 + 2 * e2 − 2 * h * e.

Неприводимые множители

Решая различные задачи, можно столкнуться со сложными выражениями, которые, как кажется, разложить нельзя. Например, (2 * p2 — 5 * p — 3)/(3 * p — 9). В числителе дроби находится квадратный трёхчлен, который на самом деле можно разложить. Для того чтобы его можно было упростить, используется формула: ar2 + br + p = a (r — r1) * (r — r2), где r1 и r2 корни выражения.

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Чтобы найти решения для линейного уравнения, необходимо определить дискриминант. То есть нужно из задачи отделить числитель, найти его решения и подставить найденные значения в формулу разложения.

Теперь вместо числителя нужно подставить полученное разложение: (2*p2 — 5*p — 3)/(3*p — 9) = 2*(p — 3) * (p + ½)/3 * (p — 3) = (2 *p + 1)/3.

Использование онлайн-калькуляторов

Как нужно раскладывать на множители. Смотреть фото Как нужно раскладывать на множители. Смотреть картинку Как нужно раскладывать на множители. Картинка про Как нужно раскладывать на множители. Фото Как нужно раскладывать на множители

Порой, для решения сложных заданий нужно затратить много времени. При этом всегда существует риск допустить ошибку при расчётах. Чтобы этого избежать или проверить свой ответ, можно воспользоваться сайтами, предлагающие онлайн-калькуляторы. Использовать их сможет даже пользователь, совершенно не понимающий методов, используемых для упрощения выражений.

Расчёт обычно занимает менее 30 секунд. Приложений для упрощений уравнений достаточно много. Написаны они на Паскале или javascript. Появление ошибки при вычислении невозможно. Нередко на этих сайтах ещё и содержится информация о способах упрощения полиномов.

Для того чтобы получить ответ, необходимо будет с помощью браузера зайти на сайт онлайн-калькулятора и заполнить предлагаемые им поля. После того как упрощаемое выражение будет вписано, следует нажать кнопку «Рассчитать» или «Упростить выражение» и получить ответ с пошаговым решением.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *