какой маске подсети в формате десятичное с точкой соответствует маска в виде префикса 25
Сети, подсети, классы подсетей. Таблица подсетей.
Введение
IP-адрес является 32-битным в длину и состоит из двух частей: адресной части сети и адресной части хоста. Сетевой адрес используется для определения сети и является общим для всех устройств, подключенных к сети. Адрес хоста (или узла) используется для определения конкретного устройства, подключенного к сети. Обычно IP-адрес имеет десятичное представление с разделительными точками, в которой 32 бита разделены на четыре октета. Каждый октет можно представить в десятичном формате с десятичной точкой в качестве разделителя.
Классы
Ниже приведены классы IP-адресов.
Класс A — Первый октет означает адрес сети, а последние три-адресную часть хоста. Любой IP-адрес, октет которого находится в диапазоне от 1 до 126 является адресом класса A. Следует учитывать, что 0 зарезервирован как часть адреса по умолчанию, а 127 зарезервировано для внутреннего тестирования с обратной связью.
Класс B — Первые два октета означают адрес сети, а последние два-адресную часть хоста. Любой адрес, первый октет которого находится в диапазоне от 128 до 191, является адресом класса B.
Класс С — Первые три октета означают адрес сети, а последний-адресную часть хоста. Первый октет, расположенный в диапазоне от 192 до 223 является адресом класса C.
Класс D — используется для многоадресной рассылки. Первые октеты IP-адресов многоадресной рассылки находятся в диапазоне от 224 до 239.
Класс E — зарезервирован для экспериментального использования и содержит диапазон адресов, в которых первый октет расположен в диапазоне от 240 до 255.
Создание подсетей и таблиц
Разбиение на подсети – это понятие, обозначающее разделение сети на меньшие части, называемые подсетями. Это можно сделать с помощью заимствования битов из части IP-адреса, в которой определяется хост, что позволяет более эффективно использовать сетевой адрес. Маска подсети определяет, какая часть адреса используется для определения сети, а какая означает хосты.
Приведенные ниже таблицы отображают все возможные способы разделения основной сети на подсети и в каждом случае показывают, сколько эффективных подсетей и хостов можно создать.
Существует три таблицы, по одной для каждого класса адресов.
В первом столбце показано количество заимствованных битов из адресной части хоста для подсети.
Во втором столбце показана полученная в результате маска подсети в десятичном формате с разделительными точками.
В третьем столбце показано число возможных подсетей.
В четвертом столбце показано число возможных допустимых хостов на каждую из трех подсетей.
В пятом столбце отображается количество битов маски подсети.
Таблица хостов/подсети класса A
Таблица хостов/подсети класса B
Таблица хостов/подсети класса C
Пример подсетей
Первая свободная запись в таблице класса A (маска подсети /10) заимствует два бита (крайние левые биты) из адресную части хоста сети для подсети. Благодаря этим двум битам образуются четыре комбинации формата (2 2 ): 00, 01, 10 и 11. Каждый из них представляет подсеть.
Примечание. Нулевая подсеть и подсеть “все единицы” включены в эффективное число подсетей, как показано в третьем столбце.
Несмотря на потерю двух битов у адресной части хоста остается еще 22 бита (из последних трех октетов). Это означает, что вся сеть класса A теперь разделена на четыре подсети, и в каждой подсети может быть 2 22 хоста (4194304). Адресная часть хоста “все нули” является номером сети, а адресная часть хоста “все единицы” зарезервирована для широковещательной рассылки в подсети, при этом эффективное число хостов равно 4194302 (2 22 – 2), как показано в четвертом столбце. Исключением из правила являются 31-битные префиксы, отмеченные знаком ( * ).
Использование 31-битных префиксов в соединениях «точка-точка» IPv4
RFC 3021 описывает использование 31-битных префиксов для соединений «точка-точка». Таким образом остается один бит для части id-хоста IP-адреса. Обычно id-хост со всеми нулями используется для представления сети или подсети, а id-хост со всеми единицами используется для представления направленной широковещательной рассылки. Используя 31-битные префиксы, id-хост, равный нулю, представляет один хост, а id-хост, равный единице, представляет другой хост соединения «точка-точка».
(Ограниченные) широковещательные рассылки локального соединения (255.255.255.255) могут все же использоваться с 31-битными префиксами. Но направленные широковещательные рассылки невозможны при использовании 31-битных префиксов. Это не является проблемой, так как в протоколах большинства маршрутов используется многоадресные, ограниченные или одноадресные рассылки.
Таблица подсетей различной ёмкости для IPv4
11 сентября 2013 г.
IP-адрес — это массив битов. Принцип IP-адресации — выделение диапазона IP-адресов, в котором некоторые битовые разряды имеют фиксированные значения, а остальные разряды пробегают все возможные значения. Блок адресов задаётся указанием начального адреса и маски подсети. Бесклассовая адресация основывается на переменной длине маски подсети (англ. variable length subnet mask, VLSM), в то время, как в классовой (традиционной) адресации длина маски строго фиксирована 0, 1, 2 или 3 установленными октетами.
Маски и размеры подсетей
Количество адресов подсети не равно количеству возможных узлов. Нулевой IP-адрес резервируется для идентификации подсети, последний — в качестве широковещательного адреса. Таким образом, в реально действующих сетях возможно количество узлов на два меньшее количества адресов.
Зарезервированные адреса
Некоторые адреса IPv4 зарезервированы для специальных целей и не предназначены для глобальной маршрутизации.
Подсеть | Назначение |
---|---|
0.0.0.0/8 | Адреса источников пакетов «этой» («своей») сети, предназначены для локального использования на хосте при создании сокетов IP. Адрес 0.0.0.0/32 используется для указания адреса источника самого хоста. |
10.0.0.0/8 | Для использования в частных сетях. |
127.0.0.0/8 | Подсеть для коммуникаций внутри хоста (см.: localhost). |
169.254.0.0/16 | Канальные адреса; подсеть используется для автоматического конфигурирования адресов IP в случае отсутствия сервера DHCP. |
172.16.0.0/12 | Для использования в частных сетях. |
100.64.0.0/10 | Для использования в сетях сервис-провайдера. |
192.0.0.0/24 | Регистрация адресов специального назначения. |
192.0.2.0/24 | Для примеров в документации. |
192.168.0.0/16 | Для использования в частных сетях. |
198.51.100.0/24 | Для примеров в документации. |
198.18.0.0/15 | Для стендов тестирования производительности. |
203.0.113.0/24 | Для примеров в документации. |
240.0.0.0/4 | Зарезервировано для использования в будущем. |
255.255.255.255 | Ограниченный широковещательный адрес. |
Зарезервированные адреса, которые маршрутизируются глобально.
IPv4 калькулятор подсетей
Параметр | Десятичная запись | Шестнадцатеричная запись | Двоичная запись |
IP адрес | 185.151.240.166 | B9.97.F0.A6 | 10111001.10010111.11110000.10100110 |
---|---|---|---|
Префикс маски подсети | /24 | ||
Маска подсети | 255.255.255.0 | FF.FF.FF.00 | 11111111.11111111.11111111.00000000 |
Обратная маска подсети (wildcard mask) | 0.0.0.255 | 00.00.00.FF | 00000000.00000000.00000000.11111111 |
IP адрес сети | 185.151.240.0 | B9.97.F0.00 | 10111001.10010111.11110000.00000000 |
Широковещательный адрес | 185.151.240.255 | B9.97.F0.FF | 10111001.10010111.11110000.11111111 |
IP адрес первого хоста | 185.151.240.1 | B9.97.F0.01 | 10111001.10010111.11110000.00000001 |
IP адрес последнего хоста | 185.151.240.254 | B9.97.F0.FE | 10111001.10010111.11110000.11111110 |
Количество доступных адресов | 256 | ||
Количество рабочих адресов для хостов | 254 |
IPv4 (англ. Internet Protocol version 4) — четвёртая версия интернет протокола (IP). Первая широко используемая версия. Протокол описан в RFC 791 (сентябрь 1981 года), заменившем RFC 760 (январь 1980 года).
IPv4 использует 32-битные (четырёхбайтные) адреса, ограничивающие адресное пространство 4 294 967 296 (2 32 ) возможными уникальными адресами.
Традиционной формой записи IPv4 адреса является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками. Через дробь указывается длина маски подсети.
IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA, существует пять RIR: ARIN, обслуживающий Северную Америку, а также Багамы, Пуэрто-Рико и Ямайку; APNIC, обслуживающий страны Южной, Восточной и Юго-Восточной Азии, а также Австралии и Океании; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
Есть два способа определения того, сколько бит отводится на маску подсети, а сколько — на IP-адрес. Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.
Запись IP-адресов с указанием через слэш маски подсети переменной длины также называют CIDR-адресом в противоположность обычной записи без указания маски, в операционных системах типа UNIX также именуемой INET-адресом.
В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов: если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast). Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, в сети 192.168.5.0 с маской 255.255.255.0 пакет с адресом 192.168.5.255 доставляется всем узлам этой сети. Такая рассылка называется широковещательным сообщением (direct broadcast).
IP-адрес называют статическим (постоянным, неизменяемым), если он назначается пользователем в настройках устройства, либо назначается автоматически при подключении устройства к сети и не может быть присвоен другому устройству.
IP-адрес называют динамическим (непостоянным, изменяемым), если он назначается автоматически при подключении устройства к сети и используется в течение ограниченного промежутка времени, указанного в сервисе назначавшего IP-адрес (DHCP).
IP-адрес и маска подсети
IP-адреса используются для идентификации устройств в сети. Для взаимодействия c другими устройствами по сети IP-адрес должен быть назначен каждому сетевому устройству — компьютерам, серверам, маршрутизаторам, принтерам и т.д. С помощью маски подсети определяется максимально возможное число хостов в конкретной сети.
Знакомство с IP-адресами
Одна часть IP-адреса представляет собой адрес сети, другая — адрес хоста внутри этой сети. Адрес сети используется маршрутизаторами (роутерами) для передачи пакетов в нужные сети, тогда как адрес хоста определяет конкретное устройство в этой сети, которому должны быть доставлены пакеты.
Структура IP-адреса
IP-адрес состоит из четырех частей, записанных в виде десятичных чисел с точками (например, 192.168.1.2). Каждую из этих четырех частей называют октетом. Октет представляет собой восемь двоичных цифр (например, 11000000, или 192 в десятичном виде). Таким образом, каждый октет может принимать в двоичном виде значения от 00000000 до 11111111, или от 0 до 255 в десятичном виде.
Количество двоичных цифр в IP-адресе, которые приходятся на адрес сети, и количество цифр в IP-адресе, приходящееся на адрес хоста, могут быть различными в зависимости от маски подсети.
Частные IP-адреса
У каждого хоста в сети Интернет должен быть уникальный адрес. Если сеть изолирована от Интернета (например, связывают два филиала компании), для хостов можно использовать любые IP-адреса. Однако, уполномоченной организацией по распределению нумерации в сети Интернет (IANA) специально для частных сетей зарезервированы следующие три блока IP-адресов:
Маски подсети
Маска подсети используется для определения того, какие биты являются частью адреса сети, а какие — частью адреса хоста (для этого применяется логическая операция «И»). Маска подсети включает в себя 32 бита. Если бит в маске подсети равен 1, то соответствующий бит IP-адреса является частью адреса сети. Если бит в маске подсети равен 0, то соответствующий бит IP-адреса является частью адреса хоста.
IP-адрес (десятичный) | 192 | 168 | 1 | 2 |
---|---|---|---|---|
IP-адрес (двоичный) | 11000000 | 10101000 | 00000001 | 00000010 |
Маска подсети (десятичная) | 255 | 255 | 255 | 0 |
Маска подсети (двоичная) | 11111111 | 11111111 | 11111111 | 00000000 |
Адрес сети (десятичный) | 192 | 168 | 1 | |
Адрес сети (двоичный) | 11000000 | 10101000 | 00000001 | |
Адрес хоста (десятичный) | 2 | |||
Адрес хоста (двоичный) | 00000010 |
Маски подсети всегда состоят из серии последовательных единиц, начиная с самого левого бита маски, за которой следует серия последовательных нулей, составляющих в общей сложности 32 бита.
1-ый октет | 2-ой октет | 3-ий октет | 4-ый октет | Десятичная | |
---|---|---|---|---|---|
8-битная маска | 11111111 | 00000000 | 00000000 | 00000000 | 255.0.0.0 |
16-битная маска | 11111111 | 11111111 | 00000000 | 00000000 | 255.255.0.0 |
24-битная маска | 11111111 | 11111111 | 11111111 | 00000000 | 255.255.255.0 |
30-битная маска | 11111111 | 11111111 | 11111111 | 11111100 | 255.255.255.252 |
Размер сети
Количество разрядов в адресе сети определяет максимальное количество хостов, которые могут находиться в такой сети. Чем больше бит в адресе сети, тем меньше бит остается на адрес хоста в адресе.
Так как такие два IP-адреса не могут использоваться в качестве идентификаторов отдельных хостов, максимально возможное количество хостов в сети вычисляется следующим образом:
Формат записи
Поскольку маска всегда является последовательностью единиц слева, дополняемой серией нулей до 32 бит, можно просто указывать количество единиц, а не записывать значение каждого октета. Обычно это записывается через слеш после адреса и количество единичных бит в маске.
Например, адрес 192.1.1.0/25 представляет собой адрес 192.1.1.0 с маской 255.255.255.128. Некоторые возможные маски подсети в обоих форматах показаны в следующей таблице.
Маска подсети | Альтернативный формат | Размер адреса хоста | Макс. кол-во хостов |
---|---|---|---|
255.255.255.0 | xxx.xxx.xxx.xxx/24 | 8 бит | 254 |
255.255.255.128 | xxx.xxx.xxx.xxx/25 | 7 бит | 126 |
255.255.255.192 | xxx.xxx.xxx.xxx/26 | 6 бит | 62 |
255.255.255.224 | xxx.xxx.xxx.xxx/27 | 5 бит | 30 |
255.255.255.240 | xxx.xxx.xxx.xxx/28 | 4 бит | 14 |
255.255.255.248 | xxx.xxx.xxx.xxx/29 | 3 бит | 6 |
255.255.255.252 | xxx.xxx.xxx.xxx/30 | 2 бит | 2 |
Формирование подсетей
С помощью подсетей одну сеть можно разделить на несколько. В приведенном ниже примере администратор сети создает две подсети, чтобы изолировать группу серверов от остальных устройств в целях безопасности.
Чтобы разделить сеть 192.168.1.0 на две отдельные подсети, нужно «позаимствовать» один бит из адреса хоста. В этом случае маска подсети станет 25-битной (255.255.255.128 или /25). «Одолженный» бит адреса хоста может быть либо нулем, либо единицей, что дает нам две подсети: 192.168.1.0/25 и 192.168.1.128/25.
Сеть A | Сеть B | |
---|---|---|
IP-адрес подсети | 192.168.1.0/25 | 192.168.1.128/25 |
Маска подсети | 255.255.255.128 | 255.255.255.128 |
Широковещательный адрес | 192.168.1.127 | 192.168.1.255 |
Минимальный IP-адрес хоста | 192.168.1.1 | 192.168.1.129 |
Максимальный IP-адрес хоста | 192.168.1.126 | 192.168.1.254 |
Четыре подсети
В предыдущем примере было показано использование 25-битной маски подсети для разделения 24-битного адреса на две подсети. Аналогичным образом для разделения 24-битного адреса на четыре подсети потребуется «одолжить» два бита идентификатора хоста, чтобы получить четыре возможные комбинации (00, 01, 10 и 11). Маска подсети состоит из 26 бит (11111111.11111111.11111111.11000000), то есть 255.255.255.192.
Маска подсети
В терминологии сетей TCP/IP маской подсети или маской сети называется битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. Например, узел с IP-адресом 12.34.56.78 и маской подсети 255.255.0.0 находится в сети 12.34.0.0.
Чтобы получить адрес сети, зная IP-адрес и маску подсети, необходимо применить к ним операцию поразрядной конъюнкции (логическое И). Например, в случае более сложной маски:
«(Логическое) И» (and) — аналог конъюнкции в логике. Иногда называется логическим умножением. Выдаёт 1 если оба входа равны 1, в противном случае 0. Если один из аргументов равен 1, то результат «И» равен другому. Если один из аргументов равен 0, то результат «И» равен 0 независимо от значения другого аргумента.
Маску подсети часто записывают вместе с IP-адресом нотации CIDR (в формате «IP-адрес/количество единичных бит в маске»).
Разбиение одной большой сети на несколько маленьких подсетей позволяет упростить маршрутизацию. Например, пусть таблица маршрутизации некоего маршрутизатора содержит следующую запись:
Сеть назначения | Маска | Адрес шлюза |
---|---|---|
255.255.0.0 |
Пусть теперь маршрутизатор получает пакет данных с адресом назначения 12.34.56.78. Обрабатывая построчно таблицу маршрутизации, он обнаруживает, что при наложении маски 255.255.0.0 на адрес 12.34.56.78 получается адрес сети 12.34.0.0. В таблице маршрутизации этой сети соответствует шлюз 11.22.3.4, которому и отправляется пакет.
Маски подсети являются основой метода бесклассовой маршрутизации.
Иногда встречается запись IP-адресов вида 10.96.0.0/11. Данный вид записи заменяет собой указание диапазона IP-адресов. Число после слэша означает количество единичных разрядов в маске подсети.
Содержание
Назначение маски подсети
Пример: В некой сети класса C есть 30 компьютеров, маска для такой сети вычисляется следующим образом: