какой материал не является исходным для получения стали

Какой материал не является исходным для получения стали

В статье представлен краткий обзор процесса выплавки стали, его составляющие и типы.

Основы технологии получения стали. Сталь требуемого химического состава получают из передельного чугуна и соответствующих шихтовых материалов при различных способах ведения плавки, окисляя и удаляя примеси чугуна: Si, Р, S и др.

Исходными материалами для выплавки стали, кроме передельного чугуна, являются: стальной лом, ферросплавы, железная руда и флюсы. Получают сталь в конвертерах, мартенах, электропечах.

Конвертерный способ получения стали заключается в том, что через расплавленный чугун, находящийся в конвертере, продувается воздух, обогащенный кислородом. Так как в процессе окисления стали получается металл, насыщенный закисью железа, то для улучшения его свойств в расплавленную сталь вводят раскислители Si, Мn, А1 и др.

Конвертер представляет собой печь грушевидной формы, вращающуюся во круг горизонтальной оси. При заполнении печи расплавленным чугуном конвертер находится в наклонном положении. Затем при помощи поворотного механизма его переводят в вертикальное положение и через отверстие в днище продувают воздух или кислород. Образующаяся вначале закись железа FeO, растворяясь в металле, вступает в реакцию с кремнием, марганцем, углеродом и фосфором, образуя Si02, МnО и фосфорные соединения, связываемые шлаком и СО, который, сгорая, удаляется с газом.

Мартеновский способ получения стали заключается в выплавке ее на поду пламенной печи из передельного чугуна и стального лома с добавкой руды и флюсов. Как и конвертерный, мартеновский способ выплавки стали может быть кислым и основным.

Мартеновская печь представляет собой агрегат, нагреваемый сгорающим газообразным или жидким топливом, на поду которого находится расплавленный металл. Для повышения теплового эффекта газ и воздух предварительно нагревают в регенераторах, для дутья применяют кислород.

Кислородно-конвертерный способ имеет преимущество перед мартеновским. Кислородно-конвертерный процесс с верхней продувкой кислорода обеспечивает высокое качество стали.

Конвертерная и мартеновская стали могут быть кипящими и спокойными. Кипящая сталь менее однородна, чем спокойная, подвергающаяся перед отливкой в изложницы раскислению А1 или Si. Поэтому из кипящей стали не изготовляют ответственные сварные конструкции, а также конструкции, работающие в условиях повышенных температур, и др. Кипящая сталь хорошо поддается обработке под давлением.

Электровыплавка стали состоит из окисления примесей чугуна и раскисления стали от закиси железа. Фосфор и сера при этом почти целиком переходят в шлаки. Для полного раскисления закиси железа в конце процесса вводят ферросилиций, а также легирующие примеси для получения особых сортов сталей.

В последнее время применяют непрерывную разливку стали. При этом сталь попадает в охлаждаемую изложницу с временным дном (кристаллизатором) из куска металла. Жидкий металл при непрерывной заливке затвердевает в кристаллизаторе у стенок и дна, образуя слиток, состоящий из корочки металла и жидкой внутренней части, непрерывно движущийся вниз, в зону вторичного охлаждения. Затвердевший слиток разрезают на куски, поступающие в прокатные станы. При непрерывной разливке стали повышается выход металла, увеличивается производительность труда, не требуется изложниц, исключается необходимость в крупных обжимных станах, блюмингах и слябингах.

В охлаждаемой проточной водой металлической изложнице расплавляется твердый флюс, в который подается электрод. Электрическая цепь замыкается через электрод, расплавленный шлак и поддон кристаллизатора. Источником тепла служит в этом процессе электрическое сопротивление шлаковой ванны. Капли, открывающиеся от оплавляемого конца электрода, проходят через шлак, образуя слиток чистой стали весом до 40 т. Таким способом изготовляют около ста марок стали, обладающих высокими и специальными свойствами (кислотостойкая, жаропрочная и др.).

Термическая обработка стали. Термическая обработка стали заключается в улучшении ее физико-механических свойств, основанных на изменении структуры при помощи нагрева и охлаждения.

Различают следующие виды термической обработки стали: закалку, отпуск, отжиг, нормализацию.

Процесс отжига заключается в нагреве стальных изделий до температуры на 20-30° С выше верхней критической точки, выдержке при этой температуре с последующим медленным охлаждением в той же печи.

Нормализация создает мелкозернистую и однородную структуру стали, повышает ее твердость и прочность, но уменьшает пластичность.

Упругая и пластическая деформация стали. Сталь под воздействием внешних усилий изменяет свою первоначальную форму (деформируется), приобретая новые свойства. Деформация стального образца будет упругой, если после удаления внешних усилий он принимает первоначальную форму, и пластической, или остаточной, если форма его при тех же условиях не восстанавливается. При этом в местах деформации сталь упрочняется, но теряет пластичность.

Одним из видов упрочнения стали под воздействием внешних сил в холодном состоянии является наклеп. Повышение прочности наклепанной стали объясняется образованием уплотненных поверхностей сдвига, а также дроблением кристаллов, повышающих сопротивление деформации стали. При дальнейшем повышении деформирующих усилий, превышающих предел прочности, сталь разрушается. Наклеп используют для улучшения свойств сталей с пониженным пределом текучести; отжигом наклеп ликвидируется.

Изменение свойств металла во времени вследствие внутренних процессов, обычно протекающих замедленно при комнатной температуре и более интенсивно при повышенной, называется старением металла.

В обычной углеродистой стали процесс старения происходит медленно и выявляется лишь в таких сооружениях, как мостовые фермы через 70-100 лет. Добавляя в металлический сплав алюминий, ванадий, титан, хром и другие вещества, процесс старения можно замедлить.

Изготовление стальных изделий давлением. Для изготовления стальных изделий давлением используют способность металла изменять форму при пластических деформациях. При этом изменяется не только форма металла, но и его структура, а значит, и свойства.

Форму металла изменяют прокаткой, волочением, ковкой, штамповкой, прессованием, гибкой, взрывом.

Подготовка стальных слитков к изготовлению сортовой стали заключается в предварительном нагревании их в методических печах или нагревательных колодцах.

Прокатка основана на пластическом свойстве стали изменять свою форму без разрушения под действием внешнего давления. Применяют горячую и холодную прокатку. Углеродистые стали прокатывают в интервале температур 800-1200° С на прокатных станах между вращающимися валками.

Из сталей различного качества и состава изготовляют профили, являющиеся элементами сварных или клепаных строительных конструкций.

В строительных конструкциях наибольшее применение имеют листовая, сортовая, фасонная стали.

К числу сортовых сталей относят круглую, квадратную, полосовую широкополосную, тонколистовую, толстолистовую, волнистую, угловую, двутавровую, швеллер, периодического профиля (арматурная сталь) и др..

Волочением получают калиброванные и некалиброванные металлические стержни и проволоку с круглой или другой формой сечения, которые служат готовыми деталями в строительстве и машиностроении или материалом для изготовления арматуры, гвоздей, болтов, шурупов и др.

Штамповка производится в формах-штампах, что обеспечивает точное соблюдение размеров изделия.

Источник

Лекция по Материаловедению «Производство стали» (СПО)

Ищем педагогов в команду «Инфоурок»

Стали – железоуглеродистые сплавы, содержащие практически до 1,5% углерода, при большем его содержании значительно увеличиваются твёрдость и хрупкость сталей и они не находят широкого применения.

Основными исходными материалами для производства стали являются предельный чугун и стальной лом (скрап).

Содержание углерода и примесей в стали значительно ниже, чем в чугуне. Поэтому сущность любого металлургического передела чугуна в сталь – снижение содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы в процессе плавки.

Железо окисляется в первую очередь при взаимодействии чугуна с кислородом в сталеплавильных печах:

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали.

Одновременно с железом окисляются кремний, фосфор, марганец и углерод. Образующийся оксид железа при высоких температурах отдаёт свой кислород более активным примесям в чугуне, окисляя их.

Процессы выплавки стали осуществляют в три этапа.

Первый этап – расплавление шихты и нагрев ванны жидкого металла. Наиболее важная задача этапа – удаление фосфора.

Для удаления фосфора необходимы невысокие температура ванны металла и шлака, достаточное содержание в шлаке какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали. Для повышения содержания какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения сталив шлаке и ускорения окисления примесей в печь добавляют железную руду и окалину, наводя железистый шлак . Второй этап – кипение металлической ванны – начинается по мере прогрева до более высоких температур.

При повышении температуры более интенсивно протекает реакция окисления углерода, происходящая с поглощением теплоты:

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали.

Для окисления углерода в металл вводят незначительное количество руды, окалины или вдувают кислород.

Третий этап – раскисление стали заключается в восстановлении оксида железа, растворённого в жидком металле.

Осаждающее раскисление осуществляется введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы, которые обладают большим сродством к кислороду, чем железо.

Легирование стали осуществляется введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирующие элементы, у которых сродство к кислороду меньше, чем у железа ( какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали), при плавке и разливке не окисляются, поэтому их вводят в любое время плавки. Легирующие элементы, у которых сродство к кислороду больше, чем у железа ( какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда в ковш.

Производство стали в мартеновских печах

Мартеновский процесс (1864-1865, Франция). В период до семидесятых годов являлся основным способом производства стали. Способ характеризуется сравнительно небольшой производительностью, возможностью использования вторичного металла – стального скрапа. Вместимость печи составляет 200…900 т. Способ позволяет получать качественную сталь.

Мартеновская печь (рис.2.2.) по устройству и принципу работы является пламенной отражательной регенеративной печью. В плавильном пространстве сжигается газообразное топливо или мазут. Высокая температура для получения стали в расплавленном состоянии обеспечивается регенерацией тепла печных газов.

Современная мартеновская печь представляет собой вытянутую в горизонтальном направлении камеру, сложенную из огнеупорного кирпича. Рабочее плавильное пространство ограничено снизу подиной 12, сверху сводом 11 , а с боков передней 5 и задней 10 стенками. Подина имеет форму ванны с откосами по направлению к стенкам печи. В передней стенке имеются загрузочные окна 4 для подачи шихты и флюса, а в задней – отверстие 9 для выпуска готовой стали.

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали

Рис. Схема мартеновской печи

Характеристикой рабочего пространства является площадь пода печи, которую подсчитывают на уровне порогов загрузочных окон. С обоих торцов плавильного пространства расположены головки печи 2, которые служат для смешивания топлива с воздухом и подачи этой смеси в плавильное пространство. В качестве топлива используют природный газ, мазут.

Для подогрева воздуха и газа при работе на низкокалорийном газе печь имеет два регенератора 1.

Регенератор – камера, в которой размещена насадка – огнеупорный кирпич, выложенный в клетку, предназначен для нагрева воздуха и газов.

Отходящие от печи газы имеют температуру 1500…1600 0 C. Попадая в регенератор, газы нагревают насадку до температуры 1250 0 C. Через один из регенераторов подают воздух, который проходя через насадку нагревается до 1200 0 C и поступает в головку печи, где смешивается с топливом, на выходе из головки образуется факел 7, направленный на шихту 6.

Отходящие газы проходят через противоположную головку (левую), очистные устройства (шлаковики), служащие для отделения от газа частиц шлака и пыли и направляются во второй регенератор.

Охлажденные газы покидают печь через дымовую трубу 8.

После охлаждения насадки правого регенератора переключают клапаны, и поток газов в печи изменяет направление.

Температура факела пламени достигает 1800 0 C. Факел нагревает рабочее пространство печи и шихту. Факел способствует окислению примесей шихты при плавке.

Продолжительность плавки составляет 3…6 часов, для крупных печей – до 12 часов. Готовую плавку выпускают через отверстие, расположенное в задней стенке на нижнем уровне пода. Отверстие плотно забивают малоспекающимися огнеупорными материалами, которые при выпуске плавки выбивают. Печи работают непрерывно, до остановки на капитальный ремонт – 400…600 плавок.

Основными технико-экономическими показателями производства стали в мартеновских печах являются:

производительность печи – съ¨м стали с 1м 2 площади пода в сутки (т/м 2 в сутки), в среднем составляет 10 т/м 2 ; р

расход топлива на 1т выплавляемой стали, в среднем составляет 80 кг/т.

С укрупнением печей увеличивается их экономическая эффективность.

3. Производство стали в кислородных конвертерах

Кислородно-конвертерный процесс – выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом через водоохлаждаемую фурму.

Первые опыты в 1933-1934 – Мозговой.

В промышленных масштабах – в 1952-1953 на заводах в Линце и Донавице (Австрия) – получил название ЛД-процесс. В настоящее время способ является основным в массовом производстве стали.

Кислородный конвертер – сосуд грушевидной формы из стального листа, футерованный основным кирпичом.

Шихтовыми материалами кислородно-конвертерного процесса являются жидкий предельный чугун, стальной лом (не более 30%), известь для наведения шлака, железная руда, а также боксит какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения сталии плавиковый шпат какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения сталидля разжижения шлака.

Последовательность технологических операций при выплавке стали в кислородных конвертерах представлена на рис. 2.3.

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали

Рис. Последовательность технологических операций при выплавке стали в кислородных конвертерах

После очередной плавки стали выпускное отверстие заделывают огнеупорной массой и осматривают футеровку, ремонтируют.

Перед плавкой конвертер наклоняют, с помощью завалочных машин загружают скрап рис. (2.3.а), заливают чугун при температуре 1250…1400 0 C (рис. 2.3.б).

После этого конвертер поворачивают в рабочее положение (рис. 2.3.в), внутрь вводят охлаждаемую фурму и через не¨ подают кислород под давлением 0,9…1,4 МПа. Одновременно с началом продувки загружают известь, боксит, железную руду. Кислород проникает в металл, вызывает его циркуляцию в конвертере и перемешивание со шлаком. Под фурмой развивается температура 2400 0 C. В зоне контакта кислородной струи с металлом окисляется железо. Оксид железа растворяется в шлаке и металле, обогащая металл кислородом.

Фосфор удаляется в начале продувки ванны кислородом, когда ее температура невысока (содержание фосфора в чугуне не должно превышать 0,15 %). При повышенном содержании фосфора для его удаления необходимо сливать шлак и наводить новый, что снижает производительность конвертера.

Сера удаляется в течение всей плавки (содержание серы в чугуне должно быть до 0,07 %).

В кислородных конвертерах выплавляют стали с различным содержанием углерода, кипящие и спокойные, а также низколегированные стали. Легирующие элементы в расплавленном виде вводят в ковш перед выпуском в него стали.

Производство стали в электропечах

Плавильные электропечи имеют преимущества по сравнению с другими плавильными агрегатами:

а) легко регулировать тепловой процесс, изменяя параметры тока;

б) можно получать высокую температуру металла,

Электропечи используют для выплавки конструкционных, высоколегированных, инструментальных, специальных сплавов и сталей.

Различают дуговые и индукционные электропечи .

5. Дуговая плавильная печь

Схема дуговой печи показана на рис.

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали

Рис. Схема дуговой плавильной печи

Вместимость печей составляет 0,5…400 тонн. В металлургических цехах используют электропечи с основной футеровкой, а в литейных – с кислой.

6. Индукционные тигельные плавильные печи

Выплавляют наиболее качественные коррозионно-стойкие, жаропрочные и другие стали и сплавы.

Вместимость от десятков килограммов до 30 тонн.

Схема индукционной тигельной печи представлена на рис 3.2.

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали

Рис. Схема индукционной тигельной печи

Тигель изготавливают из кислых (кварцит) или основных (магнезитовый порошок) огнеупоров. Для выпуска плавки печь наклоняют в сторону сливного желоба.

Под действием электромагнитного поля индуктора при плавке происходит интенсивная циркуляция жидкого металла, что способствует ускорению химических реакций, получению однородного по химическому составу металла, быстрому всплыванию неметаллических включений, выравниванию температуры.

Из плавильных печей сталь выпускают в ковш, который мостовым краном переносят к месту разливки стали. Из ковша сталь разливают в изложницы или кристаллизаторы машины для непрерывного литья заготовок. В изложницах или кристаллизаторах сталь затвердевает и получают слитки, которые подвергаются прокатке, ковке.

Изложницы – чугунные формы для изготовления слитков.

Изложницы выполняют с квадратным, прямоугольным, круглым и многогранным поперечными сечениями.

Слитки с квадратным сечением переделывают на сортовой прокат: двутавровые балки, швеллеры, уголки. Слитки прямоугольного сечения – на листы. Слитки круглого сечения используются для изготовления труб, колёс. Слитки с многогранным сечением применяют для изготовления поковок.

Спокойные и кипящие углеродистые стали разливают в слитки массой до 25 тонн, легированные и высококачественные стали – в слитки массой 0,5…7 тонн, а некоторые сорта высоколегированных сталей – в слитки до нескольких килограммов.

Сталь разливают в изложницы сверху (рис. 3.3.а), снизу (сифоном) (рис.3.3.б) и на машинах непрерывного литья (рис.3.4).

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали

Рис. Разливка стали в изложницы

а – сверху; б – снизу (сифоном)

Источник

Производство стали

Сталь является одним из самых распространенных материалов на сегодняшний день. Она представляет собой сочетание железа и углерода в определенном процентном соотношении. Существует огромное количество разновидностей этого материала, так как даже незначительное изменение химического состава приводит к изменению физико-механических качеств. Сырье для производства стали сегодня представлено отработанными стальными изделиями. Также было налажено производство конструкционной стали из чугуна. Страны-лидеры в металлургической промышленности проводят выпуск заготовок согласно стандартам, установленным в ГОСТ. Рассмотрим особенности производства стали, а также применяемые методы и то, как проводится маркировка полученных изделий.

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали

Особенности процесса производства стали

В производстве чугуна и стали применяются разные технологии, несмотря на достаточно близкий химический состав и некоторые физико-механические свойства. Отличия заключаются в том, что сталь содержит меньшее количество вредных примесей и углерода, за счет чего достигаются высокие эксплуатационные качества. В процессе плавки все примеси и лишний углерод, который становится причиной повышения хрупкости материала, уходят в шлаки. Технология производства стали предусматривает принудительное окисление основных элементов за счет взаимодействия железа с кислородом.

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали

Выплавка стали в электропечи

Рассматривая процесс производства углеродистой и других видов стали, следует выделить несколько основных этапов процесса:

Кроме этого, в зависимости от особенностей применяемой технологии могут быть получены материалы двух типов:

При производстве материала в состав могут добавляться чистые металлы и ферросплавы. За счет этого получаются легированные составы, которые обладают своими определенными свойствами.

Способы производства стали

Существует несколько методов производства стали, каждый обладает своими определенными достоинствами и недостатками. От выбранного способа зависит то, с какими свойствами можно получить материал. Основные способы производства стали:

Способы производства оцинкованной стали не сильно отличаются от рассматриваемых. Это связано с тем, что изменение качеств поверхностного слоя проходит путем химико-термической обработки.

Существуют и другие технологии производства стали, которые обладают высокой эффективностью. Например, методы, основанные на применении вакуумных индукционных печей, а также плазменно-дуговой сварки.

Мартеновский способ

Суть данной технологии заключается в переработке чугуна и другого металлолома при применении отражательной печи. Производство различной стали в мартеновских печах можно охарактеризовать тем, что на шихту оказывается большая температура. Для подачи высокой температуры проводится сжигание различного топлива.

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали

Схема мартеновской печи

Рассматривая мартеновский способ производства стали, отметим нижеприведенные моменты:

При получении стали мартеновским способом время выдержки шихты составляет 8-16 часов. На протяжении всего периода печь работает непрерывно. С каждым годом конструкция печи совершенствуется, что позволяет упростить процесс производства стали и получить металлы различного качества.

В кислородных конвертерах

Сегодня проводится производство различной стали в кислородных конвертерах. Данная технология предусматривает продувку жидкого чугуна в конвертере. Для этого проводится подача чистого кислорода. К особенностям этой технологии можно отнести нижеприведенные моменты:

какой материал не является исходным для получения стали. Смотреть фото какой материал не является исходным для получения стали. Смотреть картинку какой материал не является исходным для получения стали. Картинка про какой материал не является исходным для получения стали. Фото какой материал не является исходным для получения стали

Стоит учитывать, что производительно подобного оборудования составляет порядка 1,5 миллионов тонн при вместительности 250 тонн. Применяется данная технология для получения углеродистых, низкоуглеродистых, а также легированных сталей. Кислородно-конвертерный способ производства стали был разработан довольно давно, но сегодня все равно пользуется большой популярностью. Это связано с тем, что при применении этой технологии можно получить качественные металлы, а производительность технологии весьма высока.

В заключение отметим, что в домашних условиях провести производство стали практически невозможно. Это связано с необходимостью нагрева шихты до достаточно высокой температуры. При этом процесс окисления железа весьма сложен, как и удаления вредных примесей

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *