какой наиболее часто используемый полупроводник
Особенности полупроводников
Проводником принято считать материал, который имеет способность пропускать сквозь себя электрический ток. На основе этого материала изготавливается множество деталей в радиотехнике. В этой статье подробно описано какие бывают полупроводники, и где их чаще всего можно встретить в повседневной жизни, а также представлено несколько наиболее популярных схем.
Определение названия
Полупроводниками называют материалы, внутри которых, в следствие движения электронов, появляется электрический ток, а показатель удельного сопротивления заключается в интервале между проводниками и диэлектриками.
Определение вещества
К таким проводникам можно отнести ряд химических элементов IV, V и VI категорий из таблицы Д. И. Менделеева — графит, кремний, германий, селен и прочие, а также большинство окисей и иных соединений различных металлов. Число подвижных электронов внутри вещества, в основном, небольшое, но оно увеличивается в тысячи раз при под механическим воздействием внешней среды:
Характеристики вещества
Полупроводники можно разделить на следующие подгруппы:
Важно! В веществах вида n в роли носителей можно рассматривать электроны, которые, при возникновении тока, передвигаются по всему полупроводнику в хаотичном порядке.
В дырочном виде p в роли носителей зарядов рассматриваются так называемые отверстия (под ними понимается свободное пространство между атомами, на место которого может стать другой электрон). Дырки считаются равносильными положительному заряду. При возникновении тока внутри проводника вида p, электроны выполняют только направленные скачки между ближайшими атомами.
Важно! При перескоке заряда из одного отверстия в другое, дырка передвигается в противоположном направлении, что влечёт за собой образование тока.
Электропроводимость элементов
Собственной проводимостью полупроводника называется свойство, обусловленное носителями, образовавшимися в следствие перехода электронов из валентной зоны в зону проводимости. При температуре, близкой к абсолютному нулю, все уровни в валентной зоне полностью заполнены, а в зоне проводимости – свободны, и полупроводник по свойствам близок к диэлектрику.
Указание в таблице Менделеева
Повышение температуры приводит к тому, что часть электронов из валентной зоны переходит в зону проводимости. Каждый подобный электрон оставляет после себя в валентной зоне свободное место – дырку, рассматриваемую как эквивалентный частице положительный заряд. Следовательно, электрон и дырка рождаются одновременно – парой.
Свойства особого типа проводимости обусловлены наличием примесей. Введение примеси (порядка 0,01%) изменяет энергетическую структуру полупроводника, в запрещенной зоне появляются локальные энергетические состояния. Этот процесс получил научное название – легирование. То есть, процесс, подразумевающий внедрение в состав основного вещества определенных добавок и примесей. Легирование используется во время производства полупроводниковых приборов и деталей. Главная задача этого процесса – изменить концентрацию носителей внутри зарядов. Для этого можно воспользоваться имплантацией ионов или трансмутационным легированием.
Какие типы существуют
Существует два вида проводимости. Электронная и дырочная. Ниже подробно рассказано о каждом из них.
Виды полупроводников
По характеру проводимости
Электронная проводимость.
Если добавить в полупроводник кремния пятивалентный атом мышьяка (As), то, посредством четырехвалентных электронов, мышьяк установит ковалентные связи c четырьмя соседними атомами кремния. Для пятого валентного электрона не останется пары, и он станет слабо связанным с атомом.
Дырочная проводимость.
Введем в кристалл кремния трехвалентный атом индия (In). Индий установит ковалентные связи лишь с тремя соседними атомами кремния. Для четвертого «соседа», у индия не хватает одного электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов кремния.
По типу проводимости
По виду проводимости вещества подразделяют на n-тип и р-тип.
Проводимость «n » — типа
Полупроводник n-типа имеет примесную природу и проводит электрический ток подобно металлам. Примесные элементы, которые добавляют в полупроводники для получения n-типа, называются донорными.
Важно! Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд, переносимый свободным электроном.
Вещество p-типа, кроме примесной основы, характеризуется дырочной природой проводимости. Примеси, которые добавляют в этом случае, называются акцепторными.
Важно! «p-тип» происходит от слова «positive», означающий положительный заряд основных носителей. Ниже указаны полупроводники примеры и их использование в радиотехнике.
Сфера применения полупроводника
Полупроводниковыми приборами называются устройства, действие которых основано на использовании свойств полупроводниковых материалов.
Различие между видами
На основе беспереходных полупроводников изготавливаются такие резисторы:
Принцип работы большинства таких приборов основывается на свойствах электронно-дырочного перехода p-n – перехода.
В заключении необходимо отметить, что проводники и полупроводники каждый день встречаются в жизни человека. Их достаточно часто применяют в радиотехнике и физике. Например, их можно встретить в классических транзисторах или варисторах для сопротивления. Ни один электроприбор не сможет функционировать без этих деталей.
Примеры полупроводников, типы, свойства
Содержание статьи
Самым известным полупроводником является кремний (Si). Но, помимо него, сегодня известно много природных полупроводниковых материалов: куприт (Cu2O), цинковая обманка (ZnS), галенит (PbS) и др.
Характеристика и определение полупроводников
В таблице Менделеева 25 химических элементов являются неметаллами, из которых 13 элементов обладают полупроводниковыми свойствами. Основное отличие полупроводников от других элементов заключается в том, что их электропроводность существенно возрастает при повышении температуры.
Другой особенностью полупроводника является то, что его сопротивление падает под воздействием света. Причем электропроводимость полупроводников меняется при добавлении в состав незначительного количества примеси.
Полупроводники можно встретить среди химических соединений с разнообразными кристаллическими структурами. Например, такие элементы, как кремний и селен, или двойные соединения наподобие арсенид галлия.
К полупроводниковым материалам могут относиться и многие органические соединения, например полиацетилен (СН)n. Полупроводники могут проявлять магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). При достаточном легировании некоторые становятся сверхпроводниками (SrTiO3 и GeTe).
Полупроводник можно определить как материал с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и такое определение: ширина запрещенной зоны полупроводника должна составлять от 0 до 3 эВ.
Свойства полупроводников: примесная и собственная проводимость
Чистые полупроводниковые материалы обладают собственной проводимостью. Такие полупроводники и называются собственными, они содержат равное число дырок и свободных электронов. Собственная проводимость полупроводников возрастает при нагреве. При постоянной температуре количество рекомбинирующих электронов и дырок остается неизменным.
Наличие примесей в полупроводниках оказывает существенное влияние на их электропроводность. Это позволяет увеличить количество свободных электронов при небольшом числе дырок и наоборот. Примесные полупроводники обладают примесной проводимостью.
Примеси, которые с легкостью отдают полупроводнику электроны, называются донорными. Донорными примесями могут быть, например, фосфор и висмут.
Примеси, которые связывают электроны полупроводника и увеличивают тем самым в нем количество дырок, называют акцепторными. Акцепторные примеси: бор, галлий, индий.
Характеристики полупроводника зависят от дефектов его кристаллической структуры. Это является основной причиной необходимости выращивания в искусственных условиях предельно чистых кристаллов.
Параметрами проводимости полупроводника при этом можно управлять путем добавления легирующих присадок. Кристаллы кремния легируются фосфором, который в данном случае является донором для создания кристалла кремния n-типа. Для получения кристалла с дырочной проводимостью в полупроводник кремний добавляют акцептор бор.
Типы полупроводников: одноэлементные и двухэлементные соединения
Самым распространенным одноэлементным полупроводником является кремний. Вместе с германием (Ge) кремний считается прототипом широкого класса полупроводников, обладающих аналогичными структурами кристалла.
Структура кристаллов Si и Ge такая же, что у алмаза и α-олова с четырехкратной координация, где каждый атом окружают 4 ближайших атома. Кристаллы с тетрадрической связью считаются базовыми для промышленности и играют ключевую роль в современной технологии.
Свойства и применение одноэлементных полупроводников:
Рост ионности элементов меняет свойства полупроводников и позволяет образовывать двухэлементные соединения:
Примеры полупроводников
Оксиды являются прекрасными изоляторами. Примеры полупроводников этого типа – оксид меди, оксид никеля, двуокись меди, оксид кобальта, оксид европия, оксид железа, оксид цинка.
Процедура выращивания полупроводников данного типа не совсем изучена, поэтому их применение пока ограничено за исключением оксида цинка (ZnO), используемого в качестве преобразователя и в производстве клеящих лент и пластырей.
Помимо этого оксид цинка применяется в варисторах, датчиках газа, голубых светодиодах, биологических сенсорах. Используется полупроводник и для покрытия оконных стекол с целью отражения инфракрасного света, его можно встретить в ЖК-дисплеях и солнечных батареях.
Слоистые кристаллы представляют собой двойные соединения, подобные дииодиду свинца, дисульфиду молибдена и селениду галлия. Они отличаются слоистым строением кристалла, где действуют ковалентные связи значительной силы. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоев изменяется введением в состав сторонних атомов. Дисульфид молибдена (MoS2) применяется в высокочастотных выпрямителях, детекторах, транзисторах, мемристорах.
Органические полупроводники представляют собой широкий класс веществ: нафталин, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. У них есть преимущество перед неорганическими: им легко придать нужные качества. Они обладают значительной оптической нелинейностью и поэтому широко используются оптоэлектронике.
Кристаллические аллотропы углерода тоже относятся к полупроводникам:
Примеры магнитных полупроводников: сульфид европия, селенид европия и твердые растворы. Содержание магнитных ионов влияет на магнитные свойства, антиферромагнетизм и ферромагнетизм. Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Применяются они в радиотехнических, оптических приборах, в волноводах СВЧ-устройств.
Полупроводниковые сегнетоэлектрики отличаются наличием в них электрических моментов и возникновением спонтанной поляризации. Пример полупроводников: титанат свинца (PbTiO3), теллурид германия (GeTe), титанат бария BaTiO3, теллурид олова SnTe. При низких температурах имеют свойства сегнетоэлектрика. Эти материалы применяются в запоминающих, нелинейно-оптических устройствах и пьезодатчиках.
Полупроводниковые приборы, виды, принцип работы
За последние 70 лет полупроводники стали ключевым элементом в производстве электроники. С момента изобретения транзистора мир электроники всегда находился на экспоненциальной кривой с точки зрения исследований, разработок, производства, создания новых устройств и технологий.
Полезные статьи:
Что такое полупроводник?
Теперь давайте поговорим о важной категории материалов для нашего обсуждения, то есть о полупроводниках. При комнатной температуре полупроводники представляют собой материалы с более низкой электропроводностью, чем проводники, но с более высокой электропроводностью, чем изоляторы.
Полупроводниковые материалы
Полупроводники представляют собой широкий класс материалов, в которых концентрация подвижных носителей заряда ниже концентрации атомов, но может меняться под действием температуры, освещения, небольшого количества примесей.
Традиционно элементы группы IV, такие как кремний (Si) и германий (Ge), считаются элементарными полупроводниковыми материалами, то есть полупроводниками, состоящими только из одного атома.
Что такое полупроводниковые приборы?
Проще говоря, полупроводниковые устройства представляют собой тип электронных компонентов, которые спроектированы, разработаны и изготовлены на основе таких полупроводниковых материалов, как кремний (Si), германий (Ge) и арсенид галлия (GaAs).
С момента их использования в конце 1940-х (или начале 1950-х) полупроводники стали основным материалом при производстве электроники и ее вариантов, таких как оптоэлектроника и термоэлектроника.
До использования полупроводниковых материалов в электронных устройствах вакуумные лампы использовались в конструкции электронных компонентов. Основное различие между электронными лампами и полупроводниковыми устройствами заключается в том, что в электронных лампах проводимость электронов происходит в газообразном состоянии, тогда как в случае полупроводниковых устройств это происходит в «твердом состоянии». Полупроводниковые устройства можно найти как в виде дискретных компонентов, так и в виде интегральных схем.
Почему полупроводники?
Как упоминалось ранее, электропроводность полупроводниковых материалов находится между проводниками и изоляторами. Даже эта проводимость может контролироваться внешними или внутренними факторами, такими как электрическое поле, магнитное поле, свет, температура и механические искажения.
Пока что игнорируя внешние факторы, такие как температура и свет, процесс, называемый легированием, обычно выполняется с полупроводниковыми материалами, когда в его структуру вводятся примеси, чтобы изменить структурные, а также электрические свойства.
Чистый полупроводник известен как внутренний полупроводник, в то время как нечистый или легированный полупроводник известен как внешний полупроводник.
Собственная проводимость полупроводников
Если напряженность электрического поля в образце равна нулю, то движение освободившихся электронов и «дырок» происходит беспорядочно и поэтому не создает электрический ток.
Различные типы полупроводниковых приборов
Ниже приводится небольшой список некоторых из наиболее часто используемых полупроводниковых устройств. В зависимости от физической структуры устройства следующий список подразделяется на устройства с двумя терминалами и устройства с тремя терминалами.
Двухконтактные полупроводниковые приборы
Трехконтактные полупроводниковые приборы
Есть также несколько полупроводников с четырьмя выводами, таких как оптопара (оптопара) и датчик Холла.
Применение полупроводниковых приборов
Как упоминалось ранее, полупроводниковые приборы являются основой почти всех электронных устройств. Некоторые из применений полупроводниковых устройств:
Типы, применение и примеры полупроводников
полупроводник они являются элементами, которые избирательно выполняют функцию проводников или изоляторов, в зависимости от внешних условий, которым они подвергаются, таких как температура, давление, излучение и магнитные или электрические поля..
В периодической таблице присутствуют 14 полупроводниковых элементов, среди которых кремний, германий, селен, кадмий, алюминий, галлий, бор, индий и углерод. Полупроводники представляют собой кристаллические твердые тела со средней электропроводностью, поэтому их можно использовать в качестве проводника и изолятора двойным способом..
Если они используются в качестве проводников, при определенных условиях условия допускают циркуляцию электрического тока, но только в одном направлении. Кроме того, они не имеют такой высокой проводимости, как у проводящих металлов..
Полупроводники используются в электронных приложениях, особенно для изготовления таких компонентов, как транзисторы, диоды и интегральные схемы. Они также используются в качестве аксессуаров или аксессуаров для оптических датчиков, таких как твердотельные лазеры, и некоторых силовых устройств для систем передачи электроэнергии..
В настоящее время этот тип элементов используется для технологических разработок в области телекоммуникаций, систем управления и обработки сигналов, как в быту, так и в промышленности..
тип
Существуют различные типы полупроводниковых материалов в зависимости от присутствующих в них примесей и их физической реакции на различные воздействия окружающей среды..
Собственные полупроводники
Те элементы, молекулярная структура которых состоит из одного типа атома. К таким типам полупроводников относятся кремний и германий..
Молекулярная структура собственных полупроводников является тетраэдрической; то есть он имеет ковалентные связи между четырьмя окружающими атомами, как показано на рисунке ниже.
Каждый атом собственного полупроводника имеет 4 валентных электрона; то есть 4 электрона, вращающиеся во внешнем слое каждого атома. В свою очередь каждый из этих электронов образует связи со смежными электронами.
Таким образом, каждый атом имеет 8 электронов в своем наиболее поверхностном слое, который образует прочный союз между электронами и атомами, составляющими кристаллическую решетку..
Из-за этой конфигурации электроны не могут легко перемещаться внутри структуры. Таким образом, в стандартных условиях собственные полупроводники ведут себя как изолятор.
Однако проводимость собственного полупроводника возрастает всякий раз, когда температура увеличивается, поскольку некоторые валентные электроны поглощают тепловую энергию и отделяются от связей.
Эти электроны становятся свободными электронами и, если на них правильно воздействует разница в электрическом потенциале, они могут способствовать циркуляции тока в кристаллической решетке..
В этом случае свободные электроны переходят в зону проводимости и переходят к положительному полюсу источника потенциала (например, батареи)..
Движение валентных электронов вызывает вакуум в молекулярной структуре, что приводит к эффекту, подобному тому, который мог бы вызвать положительный заряд в системе, поэтому они рассматриваются как носители положительного заряда..
Затем имеет место обратный эффект, поскольку некоторые электроны могут выпадать из зоны проводимости до тех пор, пока валентный слой не высвободит энергию в процессе, который получает название рекомбинации..
Внешние полупроводники
Они соответствуют включением примесей в собственные проводники; то есть путем включения трехвалентных или пятивалентных элементов.
Этот процесс известен как легирование и направлен на повышение проводимости материалов, улучшение физических и электрических свойств этих.
Подставляя собственный атом полупроводника на атом другого компонента, можно получить два типа внешних полупроводников, которые подробно описаны ниже..
Полупроводник типа Р
В этом случае примесь является трехвалентным полупроводниковым элементом; то есть с тремя (3) электронами в своей валентной оболочке.
Нарушающие элементы в структуре называются легирующими элементами. Примерами этих элементов для полупроводников P-типа являются бор (B), галлий (Ga) или индий (In).
Не имея валентного электрона для образования четырех ковалентных связей собственного полупроводника, полупроводник P-типа имеет зазор в недостающем звене.
Это делает прохождение электронов, которые не принадлежат к кристаллической сети через эту дырку с носителем положительного заряда.
Из-за положительного заряда зазора звена этот тип проводников называется буквой «Р» и, следовательно, они распознаются как акцепторы электронов..
Поток электронов через зазоры связи создает электрический ток, который течет в направлении, противоположном току, получаемому от свободных электронов..
Полупроводник типа N
Навязчивый элемент в конфигурации дается пятивалентными элементами; то есть те, которые имеют пять (5) электронов в валентной зоне.
В этом случае примесями, которые включены в собственный полупроводник, являются такие элементы, как фосфор (P), сурьма (Sb) или мышьяк (As).
Присадки имеют дополнительный валентный электрон, который, не имея ковалентной связи для присоединения, автоматически может свободно перемещаться по кристаллической сети..
Здесь электрический ток циркулирует через материал благодаря избытку свободных электронов, обеспечиваемых легирующей добавкой. Поэтому полупроводники N-типа считаются донорами электронов..
черты
Полупроводники характеризуются двойной функциональностью, энергоэффективностью, разнообразием применений и низкой стоимостью. Наиболее выдающиеся характеристики полупроводников подробно описаны ниже.
— Его реакция (проводник или изолятор) может варьироваться в зависимости от чувствительности элемента к освещению, электрическим полям и магнитным полям окружающей среды..
— Если полупроводник подвергается воздействию низкой температуры, электроны будут удерживаться вместе в валентной зоне, и, следовательно, не будут возникать свободные электроны для циркуляции электрического тока..
Напротив, если полупроводник подвергается воздействию высоких температур, тепловая вибрация может влиять на прочность ковалентных связей атомов элемента, оставляя свободные электроны для электропроводности..
— Проводимость полупроводников варьируется в зависимости от доли примесей или легирующих элементов внутри собственного полупроводника..
Например, если 10 миллионов атомов бора включены в миллион атомов кремния, это соотношение увеличивает проводимость соединения в тысячу раз по сравнению с проводимостью чистого кремния..
— Составные или внешние полупроводники могут иметь оптические и электрические свойства, значительно превосходящие свойства собственных полупроводников.Примером этого аспекта является арсенид галлия (GaAs), преимущественно используемый в радиочастотных и других применениях оптоэлектронных приложений..
приложений
Полупроводники широко используются в качестве сырья при сборке электронных элементов, которые являются частью нашей повседневной жизни, таких как интегральные схемы.
Одним из основных элементов интегральной схемы являются транзисторы. Эти устройства выполняют функцию обеспечения выходного сигнала (колебательный, усиленный или выпрямленный) в соответствии с конкретным входным сигналом..
Кроме того, полупроводники также являются основным материалом диодов, используемых в электронных схемах для обеспечения прохождения электрического тока только в одном направлении..
Для конструкции диодов образуются внешние полупроводниковые соединения типа P и типа N. Посредством чередующихся элементов носителя и доноров электронов активируется механизм баланса между обеими зонами..
Таким образом, электроны и дыры в обеих зонах пересекаются и дополняют друг друга при необходимости. Это происходит двумя способами:
— Происходит перенос электронов из зоны N-типа в зону P. В зоне N-типа преобладает зона положительного нагружения..
— Представлен проход электрононосных дырок из зоны P-типа в зону N-типа. Зона P-типа приобретает преимущественно отрицательный заряд.
Наконец, создается электрическое поле, которое вызывает циркуляцию тока только в одном направлении; то есть из зоны N в зону P.
Кроме того, используя комбинации внутренних и внешних полупроводников, можно получить устройства, которые выполняют функции, аналогичные вакуумной трубке, объем которой в сотни раз превышает ее объем..
Этот тип приложений применяется к интегральным схемам, таким как микропроцессорные микросхемы, которые покрывают значительное количество электрической энергии.
Полупроводники присутствуют в электронных устройствах, которые мы используем в нашей повседневной жизни, таких как оборудование коричневой линии, такое как телевизоры, видеоплееры, звуковое оборудование; компьютеры и сотовые телефоны.
примеров
Наиболее распространенным полупроводником в электронной промышленности является кремний (Si). Этот материал присутствует в устройствах, которые составляют интегральные схемы, которые являются частью нашей повседневной жизни..
Германий и кремниевые сплавы (SiGe) используются в высокоскоростных интегральных схемах для радаров и усилителей электрических инструментов, таких как электрогитары.
Другим примером полупроводника является арсенид галлия (GaAs), широко используемый в усилителях сигнала, в частности, сигналы с высоким коэффициентом усиления и низким уровнем шума..