какой органоид есть только в растительной клетке
Органоиды клетки. Строение и функции.
Органоиды клетки и их наличие зависит от типа клетки. Современная биология делит все клетки (или живые организмы) на два типа: прокариоты и эукариоты. Прокариоты – это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома – молекула ДНК (иногда РНК).
Эукариотические клетки имеют ядро, в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды. К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).
Строение ограноидов эукариотов.
Цитоплазма
Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.
Рибосомы
Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.
Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.
Митохондрии
Органоиды, имеющие самую разнообразную форму – от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.
Эндоплазматическая сеть (ЭПС)
Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.
Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:
Лейкопласты
Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.
Являются дополнительным резервуаром для хранения питательных веществ.
Хлоропласты
Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.
Преобразуют органические вещества из неорганических, используя энергию солнца.
Хромопласты
Органоиды, от желтого до бурого цвета, в которых накапливается каротин.
Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.
Лизосомы
Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри – комплекс ферментов.
Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.
Комплекс Гольджи
Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.
Клеточный центр
Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей – двух маленьких телец.
Выполняет важную функцию для деления клетки.
Клеточные включения
Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.
Запасные питательные вещества, которые используются для жизнедеятельности клетки.
Органоиды движения
Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).
Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.
Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим отдельно.
Строение растительной клетки и ее функции
Мир растений: Freepick
Как строение растительной клетки обеспечивает ее жизнь, из чего она состоит и что содержит? Эта крохотная базовая структура каждого растительного организма отличается от животных клеток и способна сама создавать органические вещества. Познакомимся с уникальным творением природы.
Строение растительной клетки
Клетка растения — самая малая его структурная единица, а в некоторых случаях — единственная. Так, в природе растения бывают как многоклеточными, так и одноклеточными. К группе последних принадлежат многие водоросли, у которых всего одна клетка представляет собой полноценный живой организм.
В то же время многоклеточное растение — это не просто набор клеток, а единый организм, в котором есть различные ткани и органы, взаимодействующие друг с другом.
Существует базовое строение клетки растения, то есть те компоненты, которые всегда присутствуют в клетках данного типа. Основной состав растительной клетки таков:
Рассмотрим особенности строения растительной клетки подробнее.
Строение растительной клетки: Freepick
Растительная клетка: строение внешней части
В отличие от животных у растений каждая клетка отделена от окружающей среды двумя барьерами, а именно:
Клетки растений внутри: цитоплазма
Внутри растительных клеток находится специфическое полужидкое вещество, которое называют цитоплазмой. Оно состоит из воды, веществ минеральной и органической природы.
В цитоплазме находятся и взаимодействуют друг с другом все органоиды. Таким образом, она поле для протекания всех биохимических процессов.
Клеточное строение растений: органоиды
Клетка живет и выполняет все свои функции благодаря органоидам — крошечным структурам с уникальным строением.
Главный органоид каждой клетки — ядро:
Кроме ядра, клетки растений содержат:
Размеры растительных клеток варьируются от одного до десятков тысяч микрометров, а вот их наполнение в большинстве случаев практически одинаково.
Растительная клетка: особенности и функции
Разнообразные растения: Freepick
Биологи не случайно поделили клетки на растительные и животные. Несмотря на схожесть, есть у них и заметные отличия. Растительная клетка уникальна благодаря тому, что:
Остальные органоиды и компоненты у растительной и животной клетки очень похожи. Почему сформировались именно такие особенности строения клеток растений? Они обусловлены их образом жизни и тем, как растения питаются.
В большинстве своем растения известны неподвижным (прикрепленным) образом жизни: они не могут активно двигаться, чтобы находить новые источники питания или более благоприятные условия существования.
Выживают с помощью захвата воды и других необходимых веществ путем диффузии из окружающей среды, а также самостоятельно синтезируют углеводы в хлоропластах.
То есть функции растительной клетки таковы:
Теперь вам известно не только строение растительной клетки, но и предназначение всех ее структурных компонентов. Природа создала совершенное творение: такая крошечная клетка бесперебойно работает, словно настоящая биохимическая лаборатория.
Уникальная подборка новостей от нашего шеф-редактора
Органоиды растительной клетки и их функции
Клетки растений, как и клетки большинства живых организмов, состоят из клеточной оболочки, которая отмежевывает содержимое клетки (протопласт) от окружающей его среды. Клеточная оболочка включает в себя достаточно жесткую и прочную клеточную стенку (снаружи) и тонкую, эластичную цитоплазматическую мембрану (внутри). Наружный слой клеточной стенки, представляющий собой пористую целлюлозную оболочку с присутствующим в ней лигнином, состоит из пектинов. Такие составляющие определяют прочность и жесткость растительной клетки, обеспечивают её форму, способствуют лучшей защите внутриклеточного содержимого (протопласта) от неблагоприятных условий. Составляющие цитоплазматической мембраны – белки и липиды. Как клеточная стенка, так и мембрана обладают полупроницаемыми способностями и выполняют транспортную функцию, пропуская внутрь клетки воду и необходимые для жизнедеятельности элементы питания, а также регулируя обмен веществ между клетками и со средой.
Вакуоль (одна или несколько) – важнейшая составляющая протопласта, характерная только для растительных клеток. В молодых клетках присутствуют, как правило, несколько небольших вакуолей, но по мере роста и старения клетки, мелкие вакуоли сливаются в одну большую (центральную) вакуоль. Она представляет собой ограниченный мембраной (тонопластом) резервуар с находящимся внутри него клеточным соком. Основной компонент клеточного сока – это вода (70–95%), в которой растворены органические и неорганические соединения: соли, сахара (фруктоза, глюкоза, сахароза), органические кислоты (щавелевая, яблочная, лимонная, уксусная и пр.), белки, аминокислоты. Все эти продукты являются промежуточным результатом метаболизма и временно накапливаются в вакуолях как запасные питательные вещества, чтобы в дальнейшем вторично участвовать в обменных процессах клетки. Также в клеточном соке присутствуют танины (дубильные вещества), фенолы, алкалоиды, антоцианы и различные пигменты, которые выводятся в вакуоль, изолируясь при этом от цитоплазмы. В вакуоли поступают и ненужные продукты жизнедеятельности клетки (отходы), например, щавелевокислый калий.
Благодаря вакуолям клетка обеспечивается запасами воды и питательных веществ (белков, жиров, витаминов, минеральных солей), а также в ней поддерживается осмотическое внутриклеточное давление (тургор). В вакуолях происходит расщепление старых белков и органелл.
Вторая отличительная особенность растительной клетки – присутствие в ней двумембранных органоидов – пластид. Открытие этих органоидов, их описание и классификация (1880 – 1883 г.) принадлежат немецким ученым – естествоиспытателю А. Шимперу и ботанику А. Мейеру. Пластиды представляют собой вязкие белковые тельца и разделяются на три основных типа: лейкопласты, хромопласты и хлоропласты. Все они под влиянием действия определенных факторов среды способны переходить из одного вида в другой.
Среди всех типов пластид наиболее важную роль выполняют хлоропласты: в них осуществляется процесс фотосинтеза. Эти органоиды отличаются зеленой окраской, что связано с наличием в их составе значительного количества хлорофилла – зеленого пигмента, поглощающего энергию солнечного света и синтезирующего органические вещества из воды и углекислого газа. Хлоропласты отмежевываются от цитоплазмы клетки двумя мембранами (внешней и внутренней) и имеют линзообразную овальную форму (длина составляет около 5–10 мкм, а ширина колеблется от 2 до 4 мкм). Кроме хлорофилла в хлоропластах присутствуют каротиноиды (вспомогательные пигменты оранжевого цвета). Количество хлоропластов в растительной клетке может варьироваться от 1–2-х (простейшие водоросли) до 15–20 штук (клетка листка высших растений).
Мелкие бесцветные пластиды лейкопласты встречаются в клетках тех органов растения, которые скрыты от действия солнечного света (корни или корневища, клубни, луковицы, семена). Форма их очень разнообразна (шаровидные, эллипсоидные, чашевидные, гантелевидные). Они осуществляют синтез питательных веществ (главным образом, крахмала, реже – жиров и белков) из моно- и дисахаридов. Под воздействием солнечных лучей лейкопласты имеют свойство превращаться в хлоропласты.
Хромопласты образуются в результате накопления каротиноидов и содержат значительное количество пигментов желтого, оранжевого, красного, бурого цвета. Они присутствуют в клетках плодов и лепестков, определяя их яркую окраску. Хромопласты бывают дисковидные, серповидные, зубчатые, шарообразные, ромбовидные, треугольные и пр. Участвовать в процессе фотосинтеза они не могут по причине отсутствия в них хлорофилла.
Они выполняют очень сложную физиологическую роль в процессах обмена веществ клетки. Именно в митохондриях происходит ферментативное расщепление органических соединений (жирных кислот, углеводов, аминокислот), и, опять-таки под воздействием ферментов синтезируются молекулы аденозинтрифосфорной кислоты (АТФ), являющейся универсальным источником энергии для всех живых организмов. Митохондрии синтезируют энергию и являются, в сущности, «энергетической станцией» клетки. Количество этих органоидов в одной клетке непостоянно и колеблется в пределах от нескольких десятков до нескольких тысяч. Чем активнее жизнедеятельность клетки, тем большее количество митохондрий она содержит. В процессе деления клетки митохондрии также способны делиться путем образования перетяжки. Кроме того, они могут сливаться между собой, образуя одну митохондрию.
Аппарат Гольджи назван так по имени его первооткрывателя, итальянского ученого К. Гольджи (1897 г.). Органоид расположен вблизи ядра и представляет собой мембранную структуру, имеющую вид многоярусных плоских дисковидных полостей, расположенных одна над другой, от которых ответвляются многочисленные трубчатые образования, завершающиеся пузырьками. Основная функция аппарата Гольджи – это удаление из клетки продуктов ее жизнедеятельности. Аппарат имеет свойство накапливать внутри полостей секреторные вещества, включающие пектины, ксилозу, глюкозу, рибозу, галактозу. Система мелких пузырьков (везикул), расположенная на периферии этого органоида, выполняет внутриклеточную транспортную роль, перемещая синтезируемые внутри полостей полисахариды к периферии. Достигнув клеточной стенки или вакуоли, везикулы, разрушаясь, отдают им свое внутреннее содержимое. В аппарате Гольджи происходит также образование первичных лизосом.
Лизосомы были открыты бельгийским биохимиком Кристианом де Дювом (1955 г.). Они представляют собой небольшие тельца, ограниченные одной защитной мембраной и являются одной из форм везикул. Содержат более 40 различных гидролитических ферментов (гликозидаз, протеиназ, фосфатаз, нуклеаз, липаз и пр.), расщепляющих белки, жиры, нуклеиновые кислоты, углеводы, в связи с чем участвуют в процессах разрушения отдельных органоидов или участков цитоплазмы. Лизосомы выполняют важную роль в защитных реакциях и внутриклеточном питании.
Рибосомы – это очень мелкие немембранные органоиды близкой к шаровидной или эллипсоидной формы. Формируются в ядре клетки. Из-за маленьких размеров они воспринимаются как «зернистость» цитоплазмы. Некоторая часть их находится в свободном состоянии во внутренней среде клетки (цитоплазме, ядре, митохондриях, пластидах), остальные же прикреплены к наружным поверхностям мембран эндоплазматической сети. Количество рибосом в растительной клетке относительно невелико и составляет в среднем около 30000 шт. Рибосомы располагаются поодиночке, но иногда могут образовывать и группы – полирибосомы (полисомы). Этот органоид состоит из двух различных по величине частей, которые могут существовать порознь, но в момент функционирования органоида объединяются в одну структуру. Основная функция рибосом – синтез молекул белка из аминокислот.
Цитоплазму растительной клетки пронизывает огромное множество ультрамикроскопических жгутов, разветвленных трубочек, пузырьков, каналов и полостей, ограниченных трехслойными мембранами и образующих систему, известную как эндоплазматическая сеть (ЭПС). Открытие этой системы принадлежит английскому ученому К. Портеру (1945 г.). ЭПС находится в контакте со всеми органоидами клетки и составляет вместе с ними единую внутриклеточную систему, осуществляющую обмен веществ и энергии, а также обеспечивающую внутриклеточный транспорт. Мембраны ЭПС с одной стороны связаны с наружной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны.
По своему строению ЭПС неоднородна, различают два её типа: гранулярную, на мембранах которой расположены рибосомы и агранулярную (гладкую) – без рибосом. В рибосомах гранулярной сети происходит синтез белка, который затем поступает внутрь каналов ЭПС, а на мембранах агранулярной сети синтезируются углеводы и липиды, также поступающие затем в каналы ЭПС. Таким образом, в каналах и полостях ЭПС происходит накопление продуктов биосинтеза, которые затем транспортируются к органоидам клетки. Кроме того, эндоплазматическая сеть разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым отдельную среду для различных реакций.
Ядро содержит значительное количество ДНК (дезоксирибонуклеиновой кислоты), выполняющей роль носителя наследственных свойств. Именно в ядре (в хромосомах) хранится и воспроизводится вся наследственная информация, которая определяет индивидуальность, особенности, функции, признаки клетки и всего организма в целом. Кроме того, одним из наиболее важных предназначений ядра является управление обменом веществ и большинством процессов, происходящих в клетке. Информация, поступающая из ядра, определяет физиологическое и биохимическое развитие растительной клетки.
Органоиды клетки
Клеточная мембрана (оболочка)
Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.
Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. «Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.
Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.
Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.
Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.
Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.
Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.
В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.
Клеточная стенка
Цитоплазма
Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.
Прокариоты и эукариоты
Немембранные органоиды
Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.
Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.
Одномембранные органоиды
ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.
Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).
Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.
В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.
В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.
Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.
Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.
Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.
Двумембранные органоиды
Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.
Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.
Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.
В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.
Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.
Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.
Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.
Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.