при каком минусе замерзает вода
Какая температура замерзания воды под давлением и для чего это необходимо знать?
Многие помнят из курса школьной физики о том, что температура замерзания воды составляет 0°.
На самом деле это определение нуждается в уточнении – при условии воздействия нормального атмосферного давления. Последнее в значительной степени можно считать условной величиной.
О том, какова температура замерзания воды, находящейся под давлением, расскажем в статье.
Замерзает ли?
При атмосферном давлении в 760 мм рт.ст (или 0,101 МПа), вода превращается в лед уже при 0°С, как известно из школьного курса.
Но при уменьшении этого показателя меняется и точка кипения, и t°, при которой происходит превращение в лед – последняя как раз повышается.
В горах, где разреженный воздух, на определенной высоте она может уже составлять +2…+4°С. И наоборот, чем больше среда давит на воду, тем ниже находится точка замерзания на графиках.
Интересно, что при давлении в 611,73 Па совпадают температура кипения воды и плавления льда. Она составляет +0,01°С. Этот показатель называют тройной точкой воды из-за того, что она находится сразу в трех состояниях.
Считается, что при более низком показателе она просто не сможет сохранять жидкое состояние и будет превращаться в водяной пар. Причем температура плавления льда и точка замерзания воды обычно не совпадают, это разные величины.
Хотя для удобства бытовых расчетов их часто отождествляют, поскольку при 760 мм рт.ст. они как раз будут одинаковыми.
Кроме того, возможно получение и нестабильного состояния – переохлажденной жидкости. Но если в ней появится центр кристаллизации, она сразу же превратится в лед.
Температура в зависимости от показателя
Чтобы четко определить температуру замерзания, нужно сначала понять, как связаны эти 2 параметра.
Как они взаимосвязаны?
При увеличении давления, температура замерзания снижается, при уменьшении – t° растет. Существуют специальные формулы, которые помогают рассчитать конкретное значение.
Таблица таких соотношений выглядит следующим образом:
Температура, °С | Давление, мПа |
0 | 0,1 |
-1 | 1 |
-2 | 30 |
-3 | 40 |
-4 | 50 |
-5 | 60 |
-10 | 110 |
-22 | 210 |
Как происходит процесс?
Снижение температуры замерзания при увеличении давления имеет физическое обоснование.
Пресная жидкость при замерзании расширяется примерно на 10%. У соленой морской воды расширение будет меньшим, но оно все равно происходит.
Поэтому, когда внешнее давление растет, то температура замерзания снижается. Суть процесса замерзания состоит в кристаллизации воды.
Но в отличие от других жидкостей, вязкость воды при увеличении давления уменьшается. Что и обусловило более медленные процессы кристаллизации.
Это объясняется структурными особенностями молекул и некоторыми механизмами взаимодействия между ними. Для того, чтобы процесс начался, нужен центр кристаллизации, состоящий из нескольких десятков молекул.
Каково давление замерзающей жидкости?
Давление замерзающей воды обусловлено тем, что происходит ее расширение. Однако давление она оказывает и в жидком виде, просто при отрицательных температурах оно увеличивается примерно на 10%.
Как влияет тип воды?
Дистиллированная влага в принципе замерзает медленнее даже при нормальном атмосферном давлении. В отличие от других видов пресной воды, она не содержит сторонних примесей.
Физики называют такую жидкость переохлажденной. Любопытно, что если постучать по сосуду с такой дистиллированной водой, она практически моментально превратится в лед.
Что касается остальных растворов, то здесь, помимо давления, важную роль играет еще и плотность – например, у соленой воды она намного выше.
Но при этом при отрицательных температурах частицы соли как бы выталкиваются. И если растопить многолетний морской лед, то окажется, что он состоит из пресной воды, даже пригодной для питья.
Применение знаний в быту человека
В основном сведения о температуре замерзания воды нужны тем, кто сталкивается с прокладкой водопровода.
Как правило, ее замерзание в таких случаях проходит не на подземном участке трубы, а над поверхностью почвы, и далее идет процесс кристаллизации уже в наземном участке.
Чтобы этого не происходило, поскольку замерзание и расширение воды выводит из строя всю систему и нарушает целостность труб, принимают активные и пассивные меры – от утепления трубы до специально обустроенной системы обогрева.
Но очень важно с самого начала правильно сделать расчеты, подбирая производительность оборудования и диаметр труб таким образом, чтобы создать такое давление, при котором вода не будет замерзать при климатических условиях, характерных для этого региона.
Заключение
Температура замерзания воды под давлением – вопрос более сложный, чем могло бы показаться на первый взгляд. Иногда даже в быту для ее расчета нужно применять громоздкие формулы или готовые таблицы соотношений.
Физики вычислили температуру замерзания переохлажденной воды
Ученые обнаружили такую воду в земных облаках, в формировании которых процесс сверхохлаждения жидкости играет ключевую роль.
Однако нижняя температурная граница существования сверхохлажденной воды пока не определена, поскольку необходимые условия находятся за пределами возможностей экспериментов.
Эмили Мур (Emily Moore) и Валерия Молинеро (Valeria Molinero) из университета штата Юта (США) при помощи компьютерного моделирования попытались определить границы «окна» сверхохлажденности поведения молекул охлаждаемой воды. В рамках своей модели ученые наблюдали за тем, как изменяется поведение нескольких тысяч молекул воды при различных темпах охлаждения.
Авторы исследования пришли к выводу, что нижняя граница существования сверхохлажденной воды находится на отметке минус 41 градус Цельсия. При дальнейшем понижении температуры вода спонтанно превращается в аморфный лед. В этом состоянии молекулы воды расположены случайным образом, что напоминает структуру обычного стекла.
Как отмечают Мур и Молинеро, сверхохлажденная вода по своей сути нестабильна при любых температурах, и превращается в лед в результате изменения структуры жидкости, что приводит к образованию микрокристаллов льда. При этом чем выше температура воды, тем менее стабильна жидкость и тем быстрее образуются кристаллы льда.
Ледяной шарик из ста молекул воды вызвал спонтанное замерзание всей виртуальной «емкости» при температуре в 38 градусов Цельсия ниже нуля.
При каком минусе замерзает вода
Выпал снег, и появилась угроза замерзания воды в садовом водопроводе:
Компостная куча и деревья в снегу:
Ветви ели и электрические провода в снегу:
Начну с того, что на даче я живу только в тёплое время года, когда температуры воздуха исключительно положительные. Дом у меня хотя и утеплённый, но по своим теплоизоляционным характеристикам не предназначен для зимнего проживания. Да, он утеплён слоями пенопласта и фольгированной изоляцией, но это утепление недостаточно для существенных температурных минусов. Поэтому и с водопроводом я особенно не стал заморачиваться. Погружной насос в колодце накачивает воду в гидроаккумулятор, находящийся в неотапливаемом хозблоке, по трубе ПНД диаметром 32 мм, а раздача на восемь точек на участке идёт трубами ПНД диаметром 25 мм. Трубы, где они не мешают, лежат прямо на поверхности земли, а в других местах просто слегка углублены в грунт.
P.S.: Знаю ещё, что не замерзает текущая вода. Видимо потому, что не успевает выстроится кристаллическая решётка. Ну и если речь о водопроводе, то новые порции воды всегда на несколько градусов теплее нуля. Так, на дне колодца температура воды около +4 градусов. Так что при экстремальном минусе можно немного приоткрыть краники на концах раздаточных водопроводных линий. Главное, чтобы вода в колодце не кончилась )))
В общем, эксперимент пришлось прервать из-за отсутствия достаточного количества воды в колодце )))
У меня из 8 точек разбора воды 7 находятся на улице. Поскольку они все были приоткрыты во избежание порчи шаровых кранов, то за день они высосали у меня весь колодец! Осень была довольно сухая, и дебет колодца сейчас весьма низок. В итоге я слил таки всю воду из системы и вытащил насос.
Как и почему замерзает вода
Вода занимает две третьих земной поверхности и примерно столько же – в организме каждого из нас. Вода повсюду, однако до сих пор не изучена до конца, и даже самые простые ее свойства оставляют множество вопросов. Например, каждый школьник знает, что H2O может быть в трех состояниях: в жидком это вода, в газообразном – пар, и в твердой форме – лед. Но так ли очевиден ответ на вопрос, при какой температуре замерзает вода?
Что влияет на градус замерзания
Представим, что у нас есть идеальная среда с температурой ровно 0°C – общеизвестно, что вода замерзает именно при этом градусе – и в эту среду мы помещаем кусочек льда и воду в жидком состоянии. Что произойдет? Собственно, ничего: вода не замерзнет, а лед не начнет таять. Объяснение в том, что в данной модели нет условий для фазового перехода.
Простыми словами: помимо снижения температуры до определенного градуса, на замерзание воды влияют и другие факторы. Один из них – атмосферное давление, которое создаётся гравитационным притяжением воздуха к Земле. И температура замерзания воды находится в прямой зависимости от давления.
Рассмотрим это на примере: чем выше мы поднимаемся над уровнем моря, ниже становится атмосферное давление и тем выше должна быть температура для кристаллизации воды. На высоте в 1000 метров вода замерзает при температуре +2 °C; поднявшись еще на километр, мы увидим, что вода кристаллизируется уже при +4 °C.
Наличие примесей
Также, кроме давления и температуры, на замерзание воды влияет ее состав: в ней в том или ином количестве находятся органические и минеральные частицы, то есть кусочки глины, песка, пыли. Когда температура в окружающей среде снижается до необходимого градуса, вокруг этих частиц образуются кристаллы: кусочки пыли, песка, камня выполняют роль ядрового центра, вокруг которого начинается процесс кристаллизации.
А в дистиллированной (очищенной) воде процесс замерзания протекает иначе: поскольку в ней нет потенциальных ядер кристаллизации, вода может охладиться до минусовой температуры, но не замерзнуть.
Итак, время замерзания воды зависит от таких факторов:
Феноменальные свойства H 2 O
Приведем еще несколько фактов об удивительном поведении воды:
Моментальная заморозка воды – 5 невероятных трюков: Видео
Вода может не замерзать при температуре ниже нуля градусов Цельсия
С детства каждый помнит, что вода замерзает при температуре 0 градусов по Цельсию. Возможно, кто-то слышал и о том, что чистая пресная вода в очень чистом сосуде может находиться в жидком состоянии и при отрицательных температурах. Ученые в своих опытах доходили до температуры минус 40 градусов по Цельсию. Вода в жидком виде при отрицательной температуре носит название «переохлажденной», и при этом она находится в очень неустойчивом состоянии:
стоит появиться хоть одной посторонней частице, вокруг которой может образоваться кристалл льда, как тут же вся вода замерзает.
Группа ученых из института имени Вейцмана (Израиль) под руководством Игоря Любомирского выяснила, что переохлажденная вода замерзает при различных температурах в зависимости от того, положительно или отрицательно заряжена поверхность, с которой соприкасается вода. Соответствующая работа опубликована в журнале Science.
Основным предметом исследования израильских ученых стали пироэлектрические (обладающие поляризацией в отсутствие внешних воздействий) аморфные (не имеющие упорядоченной кристаллической структуры) твердые тела. Однажды Игорь Любомирский обнаружил, что если вода контактирует с поверхностью из подобного материала, то температура замерзания воды зависит от заряда поверхности.
Отрицательный заряд понижал температуру замерзания, а положительный повышал ее.
Используя метод рентгеноструктурного анализа, исследователи отметили, что положительно заряженные поверхности вызывают начало замерзания переохлажденной воды на границе «поверхность – вода», тогда как отрицательно заряженные поверхности влекут начало замерзания на поверхности «вода – воздух».
Комментируя свою работу, Игорь Любомирский признается, что не знает, почему изменение заряда так меняет свойства воды. «То, что мы теперь знаем, дает нам очень, очень, очень хорошую тему для размышлений», — приводит слова ученого National Public Radio.
Возможность контролировать температуру замерзания переохлажденной воды может быть весьма актуальной.
В частности, результаты работы израильских ученых могут найти свое применение в актуальных областях исследований:
— выживание холоднокровных животных;
— криоконсервация (методы хранения органов, тканей или отдельных клеток при пониженной температуре);
— защита сельскохозяйственных культур от замерзания;
— «посев» облаков (то есть целенаправленное изменение погоды для создания дождя в засушливых местах или вызывание дождя с целью уменьшения вероятности града).