при каком виде сварки наиболее рационально используется теплота выделяемая в дуге

Тепловые процессы при электрической сварке плавлением

Сварочная дуга является мощным концентрированным источником теплоты, температура столба дуги по его продольной оси составляет более 6000 °С, при этом большая часть электрической энергии, потребляемая дугой, превращается в тепловую. Распределение теплоты вдоль дугового промежутка происходит в соответствии с падением напряжения в его областях (см. рис. 13). При электрошлаковой сварке теплота получается за счет прохождения тока по шлаковой ванне. Электрическая мощность (Вт) в общем виде выражается уравнением: Р = I СВи СВ, где ІСВ — ток, протекающий в сварочной цепи, А; иСВ — напряжение на дуге или шлаковой ванне, В. Электрическая энергия, потребляемая при электрической сварке, в основном превращается в тепловую. Поэтому полную тепловую мощность сварочной дуги или шлаковой ванны можно определить по уравнению (Вт): Q = kI СВи СВ где k — коэффициент, учитывающий влияние, оказываемое несколько меньшим напряжением зажигания дуги, чем напряжение холостого хода. При сварке на постоянном токе коэффициент принимается равным единице, а при сварке на переменном токе — 0,70—0,97 (в зависимости от состава атмосферы дуги, состава шлаковой ванны, теплофизических свойств электродов и соотношения между напряжением холостого хода источника питания дуги и напряжением дуги). Не вся теплота используется полностью на расплавление металла, часть ее расходуется непроизводительно. Характер использования полной тепловой мощности процесса можно установить по тепловому балансу, показывающему, как и на что расходуется полная тепловая мощность при дуговой или электрошлаковой сварке. Эффективная тепловая мощность процесса электрической сварки плавлением есть количество теплоты, введенное в изделие в единицу времени. Непроизводительная часть расходуется на теплоотдачу в окружающую среду, на нагрев ползунов (при электрошлаковой сварке) ит. д.; эта часть составляет потери теплоты при сварке. Эффективная тепловая мощность определяется из уравнения: Qэф = Q? = kI СВи СВ?; где? — эффективный КПД нагрева

изделия, который представляет отношение эффективной тепловой мощности дуги (или электрошлакового процесса) к полной тепловой мощности. Ниже приведены значения КПД для некоторых способов сварки: для дуговой сварки тонкопокрытым

электродом………………… 0,50— 0,65 неплавящимся электродом в

защитном газе………………………………. 0,50—……… 0,60 толстопокрытым

электрошлаковой сварки………………………………………………….. 0,70— 0,85

Эффективная тепловая мощность зависит от способа сварки, состава покрытия и флюса, материала электрода, а также типа сварного шва. Так, например, при одной и той же электрической мощности КПД дуги будет больше при сварке стыкового соединения с разделкой кромок, чем при наплавке на плоскость. Теплота, выделяемая в дуге, наиболее рационально используется при автоматической сварке. При дуговой сварке нагрев и расплавление электрода осуществляются за счет энергии, выделяемой дугой в активном пятне, расположенном на его торце. Нагрев вылета электрода происходит за счет теплоты, выделяемой при прохождении по нему тока по закону Джоуля-Ленца. Вылетом называется участок электрода от места контакта с токоподводящим устройством до его конца. Например, при сварке вручную вылет электрода в начале сварки составляет 200- 400 мм и в конце сварки 30—40 мм. При автоматической и механизированной сварке под флюсом и в защитных газах вылет электродной проволоки составляет 12—70 мм в зависимости от ее диаметра и теплофизических свойств.

Количество теплоты, выделяемое в электроде в единицу времени, будет тем больше, чем больше плотность тока, удельное сопротивление и вылет электрода. При ручной сварке это приводит к значительному повышению температуры электрода, что ограничивает величину тока, применяемую при этом способе сварки. Качество шва будет обеспечено только тогда, когда температура электрода в момент расплавления его торца не будет превышать 600—700 °С. Нагрев электрода до более высоких температур приводит к отслаиванию покрытия, ухудшению формирования шва и увеличению потерь на разбрызгивание. Механизированные способы сварки, благодаря малому вылету электрода, позволяют применять большую плотность тока и поэтому более производительны. Производительность сварки характеризуется погонной энергией. Погонная энергия сварки представляет собой отношение эффективной тепловой мощности дуги к скорости ее перемещения gn = Qэф/V = ІсвЦц? /V. Исходя из этой формулы устанавливаем, что поперечное сечение однопроходного или многопроходного шва (валика), выполненного дуговой сваркой, будет находиться в прямой зависимости от ее погонной энергии.

Источник

Сварочные работы: Практическое пособие для электрогазосварщика (8 стр.)

Фосфор в металле шва находится в виде фосфидов железа Fe3P и Fe2P. Увеличение фосфора в металле шва снижает ударную вязкость, особенно при низких температурах, поэтому фосфор необходимо удалять. Это достигается за счет его окисления и удаления в шлак.

Для снижения вредного влияния серы и фосфора их содержащееся в основном и электродном металле, в покрытии электродов и флюсах строго ограничивается соответствующими стандартами.

Контрольные вопросы:

1. Расскажите о влиянии атмосферных газов на качество сварных швов.

2. Расскажите об особенности влияния водорода на качество сварного. Каково влияние вредных примесей (серы и фосфора) на качество сварных швов?

3. В чем заключается рафинирование?

5. Металлургические процессы при сварке под флюсом и в защитных газах

При сварке под плавлеными флюсами защита зоны сварки от окружающего воздуха происходит более эффективно. Это доказано исследованием содержания азота в металле шва. Например, при сварке тонкопокрытыми электродами остаточный азот составляет около 0,2 %; при сварке толстопокрытыми электродами – 0,03 %; при сварке под плавленым флюсом – 0,008 %.

Имеется ряд особенностей металлургических процессов при сварке под флюсом. Особенно интенсивно протекают металлургические процессы между жидким (расплавленным) флюсом и металлом, в результате чего изменяется состав металла шва. Сварку низкоуглеродистых сталей рекомендуется проводить под марганцовистыми высококремнистыми флюсами, где наблюдается процесс восстановления кремния и марганца, частичное окисление углерода, при этом оксид железа растворяется в жидком металле шва, частично переходит в шлак.

На участках сварочной ванны позади дуги при охлаждении жидкого металла, вплоть до затвердевания, продолжается раскисление металла. Кремний и марганец подавляют реакцию окисления углерода, что уменьшает образование пор. Обогащение металла шва марганцем очень важно, так как он обеспечивает вывод сернистых соединений из металла шва, предупреждая тем самым появление горячих трещин.

Изменение режима сварки влияет на содержание серы и фосфора в шве. При увеличении сварочного тока увеличивается количество расплавленного флюса и, как следствие, содержание фосфора в шве уменьшается, а содержание серы несколько возрастает. Повышение напряжения дуги при неизменном токе приводит к тому, что расплавленного флюса становится значительно больше, чем требуется для защиты расплавленного металла. В этом случае увеличивается переход марганца и кремния в шов, но увеличивается и переход фосфора в металл шва. Одновременно содержание серы в металле шва уменьшается. Таким образом, невозможно идеально освободиться от вредных примесей. Улучшения качества сварного шва можно добиться за счет применения керамических флюсов.

Керамические флюсы содержат большое количество ферросплавов, что позволяет улучшить металлургические процессы при сварке. В процессе сварки происходит более полное раскисление наплавленного металла, легирование наплавленного металла осуществляется в широких пределах.

Для улучшения структуры сварных швов в металл шва вводят специальные добавки (модификаторы).

Металлургические процессы при сварке в защитных газах значительно отличаются от ранее рассмотренных. Из защитных газов наибольшее применение имеют инертные аргон, гелий и активный углекислый газ.

При сварке в инертных газах металлургические процессы протекают только между элементами, содержащимися в металле сварочной ванны. Кислород и азот воздуха оттесняются инертными газами из зоны сварки.

Для предотвращения образования пористости шва при сварке в инертных газах необходимо тщательно удалять ржавчину и загрязнения с кромок основного металла и с поверхности сварочной проволоки.

При сварке в С02 газ оттесняет от сварочной зоны окружающий воздух и защищает расплавленный металл от проникновения азота. При сварке в С02 углекислый газ распадается под воздействием высокой температуры на СО и 02. Дуга активно окисляет металл сварочной ванны, и роль С02 сводится лишь к защите сварочной ванны от проникновения азота из воздуха. Для предотвращения чрезмерного окисления железа большое количество элементов раскислителей (марганец и кремний) вводится в сварочную ванну только через сварочную проволоку Св-08ГС и Св-08Г2С. В этом случае наплавленный металл получается с высокими механическими свойствами.

Для уменьшения содержания водорода в металле шва необходима добавка в углекислый газ 5-15 % кислорода. При этом в процессе сварки увеличивается глубина противления, так как энергичнее протекают реакции окисления марганца и кремния с выделением теплоты.

Контрольные вопросы:

1. Каково назначение флюсов?

2. Расскажите об особенностях металлургических процессов при сварке под флюсом.

3. Какое влияние оказывает режим сварки на содержание вредных примесей в сварном шве?

4. В чем достоинства керамических флюсов?

5. Каковы особенности металлургических процессов при сварке в защитных газах?

6. Тепловые процессы при электрической сварке плавлением

Сварочная дуга является мощным концентрированным источником теплоты, температура столба дуги по его продольной оси составляет более 6000 °С, при этом большая часть электрической энергии, потребляемая дугой, превращается в тепловую. Распределение теплоты вдоль дугового промежутка происходит в соответствии с падением напряжения в его областях (см. рис. 13). При электрошлаковой сварке теплота получается за счет прохождения тока по шлаковой ванне. Электрическая мощность (Вт) в общем виде выражается уравнением:

где IСВ – ток, протекающий в сварочной цепи, А;

UСВ – напряжение на дуге или шлаковой ванне, В.

Электрическая энергия, потребляемая при электрической сварке, в основном превращается в тепловую. Поэтому полную тепловую мощность сварочной дуги или шлаковой ванны можно определить по уравнению (Вт):

где k – коэффициент, учитывающий влияние, оказываемое несколько меньшим напряжением зажигания дуги, чем напряжение холостого хода.

При сварке на постоянном токе коэффициент принимается равным единице, а при сварке на переменном токе – 0,70-0,97 (в зависимости от состава атмосферы дуги, состава шлаковой ванны, теплофизических свойств электродов и соотношения между напряжением холостого хода источника питания дуги и напряжением дуги). Не вся теплота используется полностью на расплавление металла, часть ее расходуется непроизводительно. Характер использования полной тепловой мощности процесса можно установить по тепловому балансу, показывающему, как и на что расходуется полная тепловая мощность при дуговой или электрошлаковой сварке. Эффективная тепловая мощность процесса электрической сварки плавлением есть количество теплоты, введенное в изделие в единицу времени. Непроизводительная часть расходуется на теплоотдачу в окружающую среду, на нагрев ползунов (при электрошлаковой сварке) и т. д.; эта часть составляет потери теплоты при сварке. Эффективная тепловая мощность определяется из уравнения:

Ниже приведены значения КПД для некоторых способов сварки:

для дуговой сварки тонкопокрытым электродом. 0,50-0,65

неплавящимся электродом в защитном газе. 0,50-0,60

толстопокрытым электродом. 0,80-0,95

для электрошлаковой сварки. 0,70-0,85

Эффективная тепловая мощность зависит от способа сварки, состава покрытия и флюса, материала электрода, а также типа сварного шва. Так, например, при одной и той же электрической мощности КПД дуги будет больше при сварке стыкового соединения с разделкой кромок, чем при наплавке на плоскость. Теплота, выделяемая в дуге, наиболее рационально используется при автоматической сварке.

При дуговой сварке нагрев и расплавление электрода осуществляются за счет энергии, выделяемой дугой в активном пятне, расположенном на его торце. Нагрев вылета электрода происходит за счет теплоты, выделяемой при прохождении по нему тока по закону Джоуля-Ленца. Вылетом называется участок электрода от места контакта с токоподводящим устройством до его конца. Например, при сварке вручную вылет электрода в начале сварки составляет 200– 400 мм и в конце сварки 30-40 мм. При автоматической и механизированной сварке под флюсом и в защитных газах вылет электродной проволоки составляет 12-70 мм в зависимости от ее диаметра и теплофизических свойств. Количество теплоты, выделяемое в электроде в единицу времени, будет тем больше, чем больше плотность тока, удельное сопротивление и вылет электрода. При ручной сварке это приводит к значительному повышению температуры электрода, что ограничивает величину тока, применяемую при этом способе сварки. Качество шва будет обеспечено только тогда, когда температура электрода в момент расплавления его торца не будет превышать 600-700 °С. Нагрев электрода до более высоких температур приводит к отслаиванию покрытия, ухудшению формирования шва и увеличению потерь на разбрызгивание. Механизированные способы сварки, благодаря малому вылету электрода, позволяют применять большую плотность тока и поэтому более производительны. Производительность сварки характеризуется погонной энергией. Погонная энергия сварки представляет собой отношение эффективной тепловой мощности дуги к скорости ее перемещения

Источник

Реферат: Тепловые процессы при дуговой сварке

Тепловые процессы при дуговой сварке

Сварочная дуга как источник нагрева

Сварочная дуга является мощным концентрированным источником теплоты. Электрическая энергия, потребляемая дугой, в основном превращается в тепловую энергию. Выделение тепловой энергии происходит в анодном и катодном активных пятнах и дуговом промежутке. При нагреве детали наибольшей интенсивности тепловой поток дуги достигает в центральной зоне активного пятна (рис. 1). По мере удаления от центра пятна интенсивность теплового потока убывает. Распределение теплоты вдоль дугового промежутка происходит в соответствии с падением напряжения в его областях.

Данные значений для различных способов сварки приведены на табл. 1. Данные рис. 2 и табл. 1 показывают, что теплота дуги наиболее рационально используется при автоматической сварке под флюсом.

1. Значения h для различных способов сварки

В защитном газе вольфрамовым электродом

Плавление металла электрода и его перенос в дуге при сварке

Гравитационная сила проявляется в стремлении капли перемещаться по вертикали сверху вниз.

Сила поверхностного натяжения обеспечивает капле сферическую форму. Электромагнитные силы играют важнейшую роль в отрыве и направленном переносе капель к сварочной ванне при сварке швов в любом пространственном положении. Электрический ток, проходя по электроду, создает вокруг него магнитное поле, оказывающее сжимающее действие. Сжатие расплавленной части электрода приводит к образованию шейки у места перехода к твердому металлу (рис. 3). По мере уменьшения ее сечения и возрастания плотности тока жидкий металл формируется и отделяется в виде сферической капли.

при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть фото при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть картинку при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Картинка про при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Фото при каком виде сварки наиболее рационально используется теплота выделяемая в дугеРис. 3. Схема сжимающего действия электромагнитных сил на жидкую каплю электродного металла

При этом капля за счет действия электромагнитной силы приобретает направленность движения к сварочной ванне. Сила внутреннего давления газов также участвует в переносе капли. Расплавленный металл на электроде сильно перегрет. Образующиеся в нем газы способствуют отрыву его от торца электрода и могут раздробить на более мелкие капли.

При дуговой сварке плавящимся электродом различают три типа переноса электродного металла: крупнокапельный, мелкокапельный, или струйный, и перенос с образованием коротких замыканий дуги.

Характер переноса капель с электрода в сварочную ванну зависит от силы сварочного тока и напряжения дуги.

Производительность процесса дуговой сварки

Производительность процесса дуговой сварки оценивают по количеству проплавленного в единицу времени основного металла Gпр и количеству наплавленного металла Gн, определяемого как избыток массы конструкции после сварки по сравнению с массой до сварки.

Коэффициент расплавления выражают отношением массы электрода, расплавленного за единицу времени горения дуги, к единице силы сварочного тока. Обычно его представляют количеством расплавленного металла электрода в течение 1 ч, приходящимся на 1 А сварочного тока. Скорость расплавления электродного металла в значительной степени определяет производительность и эффективность процесса сварки, а коэффициент расплавления зависит от ряда факторов, определяющих условия сварки: рода и силы тока, полярности, напряжения дуга, состава и толщины покрытия электрода или флюса. Коэффициент расплавления при сварке плавящимся электродом в среде защитных газов заметно изменяется с изменением полярности тока и состава газа. При увеличении сварочного тока, как правило, коэффициент расплавления возрастает. Особенно это заметно при больших плотностях тока, применяемых при механизированной и автоматической сварке. В большинстве случаев при сварке коэффициент ан меньше коэффициента ар на величину потерь электродного металла, возникающих за счет угара и разбрызгивания. Эта часть металла, не участвующая в образовании шва, характеризуется коэффициентом потерь а, который выражают в процентах:

при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть фото при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть картинку при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Картинка про при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Фото при каком виде сварки наиболее рационально используется теплота выделяемая в дуге

Общие сведения о нагреве металла при сварке

Нагревание металла в сварном соединении при дуговой сварке определяется эффективной тепловой мощностью дуги и распределением выделяемой теплоты на поверхности и в объеме детали. Наибольшей интенсивности тепловой поток сварочной дуги достигает в центральной зоне активного пятна, где вследствие электронной и ионной бомбардировки происходит непосредственное выделение теплоты в поверхностных слоях металла. В пограничных с активным пятном областях металл нагревается в основном за счет лучистого обмена со столбом дуги и конвективного обмена с горячими газами дуги. По мере удаления от центра пятна интенсивность теплового потока убывает (см. рис. 1). Из приведенных данных видно, что тепловой поток дуги при сварке под флюсом является более сосредоточенным, чем при ручной дуговой сварке. Знание о распространении теплоты при сварке имеет важное значение для изучения процессов, связанных с нагревом металла при всех видах сварки.

Распространение теплоты в основном металле происходит за счет теплопроводности. В начальный момент сварки поступление теплоты в металл от дуги превышает его теплоотвод от места нагрева. При этом температура металла в точках, находящихся на определенном расстоянии от дуги, непрерывно повышается. Такое состояние металла в сварном соединении рассматривается как неустановившийся тепловой режим. По прошествии некоторого времени наступает равновесие между количеством теплоты, поступающей от источника нагрева, и теплоты, отводимой в изделие. При этом температура металла в точках, находящихся на определенных расстояниях от дуги, остается неизменной. Тепловое состояние металла достигает определенной стабильности и характеризуется как установившийся тепловой режим.

Нагрев основного металла подвижным источником

В качестве подвижного источника теплоты принимается источник определенной тепловой мощности, перемещающийся прямолинейно и равномерно, т.е. с постоянной скоростью. При неподвижном источнике нагрева (рис. 4) тепловое поле в металле характеризуется системой концентрических изотерм с общим центром. При подвижном источнике нагрева изотермы приобретают вытянутую форму и перемещаются в направлении его движения.

Процесс распространения теплоты в металле зависит от ряда факторов: эффективной тепловой мощности дуги, характера ее перемещения, размера и формы свариваемого изделия, теплофизических свойств материала. Изменение этих факторов определенным образом влияет на нагрев изделия, что можно оценить по изменению формы изотерм температурного поля (рис. 5). Так, с увеличением мощности дуги области металла, нагретые до определенных температур, увеличиваются (рис. 5, а). Увеличение скорости перемещения дуги приводит к уменьшению таких областей, а соответствующие изотермы сужаются в направлении, перпендикулярном оси шва, и сгущаются впереди дуги (рис. 5, б).

при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть фото при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть картинку при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Картинка про при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Фото при каком виде сварки наиболее рационально используется теплота выделяемая в дуге

Из основных теплофизических свойств металла наиболее сильное влияние на характер распределения температур оказывает теплопроводность. На рис. 6. показаны температурные поля в пластинах из металлов с разными теплофизическими свойствами, построенные при одинаковых режимах сварки. Области, нагретые выше определенной температуры, в хромоникелевой стали имеют большие размеры, чем в низкоуглеродистой, что объясняется меньшей теплопроводностью хромоникелевой стали. В связи с высокой теплопроводностью алюминия и меди происходит значительное уменьшение площади областей, нагретых до одинаковых температур, по сравнению со сталями. А сами изотермы укорачиваются; по очертаниям приближаясь к форме окружности, и смещаются в область впереди источника нагрева.

при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть фото при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть картинку при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Картинка про при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Фото при каком виде сварки наиболее рационально используется теплота выделяемая в дуге

В зависимости от формы и размеров изделия в настоящее время разработаны методики и расчетные схемы процесса-нагрева металла при сварке, позволяющие расчетным путем определять температуру в точках теплового поля сварного соединения в зависимости от свойств свариваемого металла и условий его сварки.

Формирование сварочной ванны

Образование сварочной ванны является важнейшим этапом получения соединения при сварке плавлением. От формы и размеров сварочной ванны зависят форма и размеры сварных швов. Последние во многом определяют эксплуатационные характеристики получаемых соединений.

Форму и размеры сварочной ванны определяют границами изотермической поверхности объемного теплового поля, соответствующие температуре плавления металла Тпл. Однако такой подход является несколько идеализированным, поскольку формирование объема расплавленного металла учитывает лишь эффект распространения теплоты в глубь металла за счет теплопроводности. В реальных условиях сварки сварочная ванна формируется под действием целого ряда сил, действующих в ней, в первую очередь силы тяжести жидкого металла, поверхностного натяжения его и давления самого источника нагрева. Дуга, обеспечивающая местный нагрев и расплавление кромок соединяемых элементов, оказывает на расплавленный металл давление, за счет которого он вытесняется из передней части ванны, т. е. из области с наибольшей интенсивностью нагрева в ее хвостовую часть. Это ведет к уменьшению толщины жидкой прослойки под дугой и создает условия для углубления ванны. В результате изменяются очертания зоны расплавления (рис. 7). Давление на расплавленный металл определяется разностью его уровней h в ванне. Изменение условий сварки, в свою очередь, существенно отражается на формировании сварочной ванны, соотношении ее геометрических размеров. Так, увеличение эффективной тепловой мощности, сосредоточенности источника, увеличение давления дуги ведут к увеличению глубины проплавления и уменьшению ширины. При этом ванна удлиняется.

при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть фото при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть картинку при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Картинка про при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Фото при каком виде сварки наиболее рационально используется теплота выделяемая в дугеРис. 7. Параметры формы сварочной ванны

При сварке в вертикальном положении (рис. 8, а) процесс можно вести сверху вниз (на спуск) и снизу вверх (на подъем). В обоих случаях сила тяжести направлена вниз. При сварке на подъем сварочная ванна удерживается только силой поверхностного натяжения. При этом глубина проплавления резко возрастает. Для удержания расплава приходится ограничивать тепловую мощность дуги и размеры ванны. При сварке на спуск удержанию жидкого металла способствует давление дуги, а глубина проплавления уменьшается.

При сварке в потолочном положении (рис. 8, в) сварочная ванна удерживается силами поверхностного натяжения и давлением источника нагрева. Для удержания ванны в потолочном положении также необходимы меры по ограничению ее объема. Особенно неблагоприятные условия формирования ванны создаются при выполнении горизонтальных швов (рис. 8, г). Расплавленный металл натекает на нижнюю кромку. Это приводит к образованию несимметричной выпуклой формы шва, а также подрезов. Требование к сокращению размеров сварочной ванны в этом случае особенно жесткое.

Важным фактором, влияющим на работоспособность сварных соединений и также связанным с образованием сварочной ванны, является формирование проплавления корня шва. На рис. 9 показаны силы, действующие на ванну. Ванна удерживается на весу силой поверхностного натяжения Рп.

Поверхностное натяжение уравновешивает давление Pд, оказываемое на ванну дугой, и металлостатическое давление Pм = h v, определяющееся разницей уровней h и плотностью расплавленного металла v.

Условие равновесия ванны в положении на весу можно записать так: Pд + Pм = С (1/ r1 + 1/ r2) где С- поверхностное натяжение расплавленного металла.

Из этой формулы следует, что удержание ванны облегчается при уменьшении радиуса кривизны проплава, определяющегося его размерами в поперечном r1 и продольном r2 сечениях. С увеличением ширины и протяженности ванны возрастают радиусы кривизны поверхности жидкого металла в двух взаимно перпендикулярных направлениях. В момент достижения одним из радиусов величины, большей критической, металлостатическое давление расплавленного металла и сила давления дуги превысят силу поверхностного натяжения, удерживающую сварочную ванну. Произойдет разрыв поверхностного слоя в корне шва, и жидкий металл вытечет из ванны, образуя прожог. Особенно часто это наблюдается при сварке металла малой толщины, когда сварочная ванна по ширине значительно превышает толщину свариваемого металла. Наиболее распространенной мерой предупреждения прожогов и обеспечения формирования проплава требуемой формы является правильный выбор сварочных режимов и применение сварочных подкладок.

Параметры режима дуговой сварки и их влияние на форму и размеры сварочной ванны

К основным параметрам дуговой сварки относятся сила сварочного тока Iсв, напряжение дуги Uд, скорость сварки Vсв. Помимо того, условия сварки зависят от ряда дополнительных факторов: диаметра электрода, рода и полярности тока, положения электрода по отношению к ванне и др.

Сила сварочного тока в наибольшей степени определяет тепловую мощность дуги. При постоянном диаметре электрода с увеличением силы тока возрастает концентрация тепловой энергии в пятне нагрева, повышается температура газовой среды столба дуги, стабилизируется положение активных пятен на электродах. С увеличением силы тока дуги возрастают длина сварочной ванны, ее ширина и особенно глубина проплавления. В определенных пределах изменения силы тока глубина проплавления сварочной ванны может быть оценена зависимостью, близкой к линейной:

С увеличением напряжения дуги также возрастает тепловая мощность, а следовательно, и размеры ванны. Наиболее интенсивно увеличиваются ширина и длина ванны. При постоянной силе тока повышение напряжения дуги незначительно сказывается на глубине проплавления. Путем медленного уменьшения длины дуги и соответственно напряжения ее можно подойти к процессу сварки погруженной дугой.

Изменение скорости сварки при постоянной тепловой мощности дуги заметно сказывается на размерах сварочной ванны и шва. С повышением скорости уменьшаются глубина проплавления и ширина ванны, а длина несколько увеличивается.

Важным параметром дуговой сварки является погонная энергия, представляющая отношение эффективной тепловой мощности дуги к скорости ее перемещения (скорости сварки). Этот параметр является обобщающим по отношению к основным параметрам сварочного режима и может быть представлен формулой:

при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть фото при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Смотреть картинку при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Картинка про при каком виде сварки наиболее рационально используется теплота выделяемая в дуге. Фото при каком виде сварки наиболее рационально используется теплота выделяемая в дуге

Погонная энергия характеризует тепловложение в сварное соединение и представляет количество тепловой энергии, вводимое на единицу длины однопроходного шва. Этот параметр очень важен для оценки воздействия термического цикла сварки на основной и наплавленный металл шва. При постоянной погонной энергии повышение скорости сварки вызывает увеличение термического КПД процесса, что связано с возрастанием глубины проплавления и уменьшением ширины сварочной ванны.

Дополнительными параметрами, определяющими условия сварки и особенности горения дуги, являются диаметр электрода, род тока и др. Например, при постоянной силе тока диаметр электрода определяет плотность энергии в пятне нагрева и Подвижность дуги. При неизменном значении погонной энергии Можно изменять диаметр электрода, род тока и полярность, использовать колебания электрода или наклон его к поверхности изделия и др. Эти особенности процесса, в свою очередь, сказываются на формировании ванны и конечных размеров швов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Название: Тепловые процессы при дуговой сварке
Раздел: Промышленность, производство
Тип: реферат Добавлен 10:18:11 28 июня 2011 Похожие работы
Просмотров: 2054 Комментариев: 15 Оценило: 7 человек Средний балл: 4 Оценка: 4 Скачать