при каком значении параметра а касательная к графику функции в точке с абсциссой параллельна прямой
При каком значении параметра а касательная к графику функции в точке с абсциссой параллельна прямой
На рисунке изображен график производной функции f(x), определенной на интервале (−10; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = −2x − 11 или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой y = −2x − 11 или совпадает с ней, их угловые коэффициенты равны –2. Найдем количество точек, в которых это соответствует количеству точек пересечения графика производной с прямой y = −2. На данном интервале таких точек 5.
На рисунке изображен график производной функции Найдите абсциссу точки, в которой касательная к графику
параллельна прямой
или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой или совпадает с ней, она имеет угловой коэффициент равный 2 и
Осталось найти, при каких
производная принимает значение 2. Искомая точка
Если f'(x)=2, то это не значит, что f(x)=2, а следовательно x≠5. На рисунке видно, что с вашим ответом прямая и касательная далеко не параллельны. Синим цветом указано примерное расположение верного ответа (x∈[-2;-1])
Вот ссылка на картинку http://i68.fastpic.ru/big/2014/0903/62/b8e7df53c7801d840bc852112753ab62.png
Внимательно прочитайте условие и наше решение, и Вы поймёте, что мы правы, а Вы решали другую задачу.
На рисунке изображён график — производной функции
определённой на отрезке (−11; 2). Найдите абсциссу точки, в которой касательная к графику функции
параллельна оси абсцисс или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, она имеет вид и её угловой коэффициент равен 0. Следовательно, мы ищем точку, в которой угловой коэффициент равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс. Поэтому искомая точка
При каком значении параметра а касательная к графику функции в точке с абсциссой параллельна прямой
На рисунке изображен график функции y=f(x), определенной на интервале (−3; 9). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 12 или совпадает с ней.
Поскольку касательная параллельна прямой y = 12 или совпадает с ней, их угловые коэффициенты равны 0. Угловой коэффициент касательной равен значению производной в точке касания. Производная равна нулю в точках экстремума функции. На заданном интервале функция имеет 2 максимума и 3 минимума, итого 5 экстремумов. Таким образом, касательная к графику функции параллельна прямой y = 12 или совпадает с ней в 5 точках.
На рисунке изображен график функции y = f(x), определенной на интервале (−5; 5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.
Поскольку касательная параллельна прямой y = 6 или совпадает с ней, их угловые коэффициенты равны 0. Угловой коэффициент касательной равен значению производной в точке касания. У данной функции производная равна нулю только в точках экстремума функции. На заданном интервале функция имеет 2 максимума и 2 минимума, итого 4 экстремума. Таким образом, касательная к графику функции параллельна прямой y = 6 или совпадает с ней в 4 точках.
в точке перегиба производная тоже равна нулю
Точек перегиба на графике несколько, ни в одной из них производная нулю не равна.
Разве при х=0, производная не равна 0?
В точке 0 производная отрицательна.
Но ведь здесь только одна точка максимума
В точках перегиба (а это Х=0) производная тоже равна 0. Поэтому ответ 5.
В точке перегиба вторая производная равна нулю.
Уважаемые коллеги, при решении заданий вы крайне невнимательно работаете с графиками.
Не обращая внимания на тонкости графика, вы даёте неправильные ответы и пояснения!
Авторитет сайта для детей высок, трачу много времени, доказывая свою правоту!
Обратите внимание, что пояснения к заданиям 7093, 7097, 7099, 7103 начинаются фразой, выделенной красным цветом, «Это задание еще не решено, приводим решение прототипа». Поэтому в решениях этих заданий пока не может быть ошибок, так как отсутствуют сами решения.
На рисунке изображён график функции y = f(x), определённой на интервале (−3; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 1.
Поскольку касательная параллельна прямой y = 1 или совпадает с ней, их угловые коэффициенты равны 0. Угловой коэффициент касательной равен значению производной в точке касания. Производная равна нулю в точках экстремума функции. На заданном интервале функция имеет 7 экстремумов. Таким образом, касательная к графику функции параллельна прямой y = 1 или совпадает с ней в 7 точках.
На рисунке изображён график функции y = f(x), определённой на интервале (−4; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 18.
Поскольку касательная параллельна прямой y = 18 или совпадает с ней, их угловые коэффициенты равны 0. Угловой коэффициент касательной равен значению производной в точке касания. Производная равна нулю в точках экстремума функции. На заданном интервале функция имеет 6 экстремумов. Таким образом, касательная к графику функции параллельна прямой y = 18 или совпадает с ней в 6 точках.
Прямая параллельна касательной к графику функции
Найдите абсциссу точки касания.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой их угловые коэффициенты равны. Поэтому абсцисса точки касания находится из уравнения
:
Прямая параллельна касательной к графику функции
Найдите абсциссу точки касания.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой их угловые коэффициенты равны. Поэтому абсцисса точки касания находится из уравнения
:
Прямая параллельна касательной к графику функции
Найдите абсциссу точки касания.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой их угловые коэффициенты равны. Поэтому абсцисса точки касания находится из уравнения
:
На рисунке изображен график производной функции f(x), определенной на интервале (−9; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = −x − 12 или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой y = −x − 12 или совпадает с ней, их угловые коэффициенты равны –1. Найдем количество точек, в которых y‘(x0) = −1, это соответствует количеству точек пересечения графика производной с прямой y = −1. На данном интервале таких точек 3.
Прямая параллельна касательной к графику функции
Найдите абсциссу точки касания.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой их угловые коэффициенты равны. Поэтому абсцисса точки касания находится из уравнения
:
На рисунке изображён график — производной функции
Найдите абсциссу точки, в которой касательная к графику
параллельна прямой y = 6 − 2x или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой y = 6 − 2x или совпадает с ней, её угловой коэффициент равен −2. Следовательно, мы ищем точку, в которой угловой коэффициент равен −2, а значит, и производная равна −2. Поэтому искомая точка
Прямая параллельна касательной к графику функции
Найдите абсциссу точки касания.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой их угловые коэффициенты равны. Поэтому абсцисса точки касания находится из уравнения
:
Прямая параллельна касательной к графику функции
Найдите абсциссу точки касания.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой их угловые коэффициенты равны. Поэтому абсцисса точки касания находится из уравнения
:
На рисунке изображен график производной функции определенной на интервале
Найдите количество точек, в которых касательная к графику функции
параллельна прямой
или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой или совпадает с ней, их угловые коэффициенты равны –4. Найдем количество точек, в которых y’(x0) = −4, это соответствует количеству точек пересечения графика производной с прямой y = −4. На данном интервале таких точек 2.
При каком значении параметра а касательная к графику функции в точке с абсциссой параллельна прямой
На рисунке изображен график функции y=f(x), определенной на интервале (−3; 9). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 12 или совпадает с ней.
Поскольку касательная параллельна прямой y = 12 или совпадает с ней, их угловые коэффициенты равны 0. Угловой коэффициент касательной равен значению производной в точке касания. Производная равна нулю в точках экстремума функции. На заданном интервале функция имеет 2 максимума и 3 минимума, итого 5 экстремумов. Таким образом, касательная к графику функции параллельна прямой y = 12 или совпадает с ней в 5 точках.
На рисунке изображен график функции y = f(x), определенной на интервале (−5; 5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.
Поскольку касательная параллельна прямой y = 6 или совпадает с ней, их угловые коэффициенты равны 0. Угловой коэффициент касательной равен значению производной в точке касания. У данной функции производная равна нулю только в точках экстремума функции. На заданном интервале функция имеет 2 максимума и 2 минимума, итого 4 экстремума. Таким образом, касательная к графику функции параллельна прямой y = 6 или совпадает с ней в 4 точках.
в точке перегиба производная тоже равна нулю
Точек перегиба на графике несколько, ни в одной из них производная нулю не равна.
Разве при х=0, производная не равна 0?
В точке 0 производная отрицательна.
Но ведь здесь только одна точка максимума
В точках перегиба (а это Х=0) производная тоже равна 0. Поэтому ответ 5.
В точке перегиба вторая производная равна нулю.
Уважаемые коллеги, при решении заданий вы крайне невнимательно работаете с графиками.
Не обращая внимания на тонкости графика, вы даёте неправильные ответы и пояснения!
Авторитет сайта для детей высок, трачу много времени, доказывая свою правоту!
Обратите внимание, что пояснения к заданиям 7093, 7097, 7099, 7103 начинаются фразой, выделенной красным цветом, «Это задание еще не решено, приводим решение прототипа». Поэтому в решениях этих заданий пока не может быть ошибок, так как отсутствуют сами решения.
На рисунке изображён график функции y = f(x), определённой на интервале (−3; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 1.
Поскольку касательная параллельна прямой y = 1 или совпадает с ней, их угловые коэффициенты равны 0. Угловой коэффициент касательной равен значению производной в точке касания. Производная равна нулю в точках экстремума функции. На заданном интервале функция имеет 7 экстремумов. Таким образом, касательная к графику функции параллельна прямой y = 1 или совпадает с ней в 7 точках.
На рисунке изображён график функции y = f(x), определённой на интервале (−4; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 18.
Поскольку касательная параллельна прямой y = 18 или совпадает с ней, их угловые коэффициенты равны 0. Угловой коэффициент касательной равен значению производной в точке касания. Производная равна нулю в точках экстремума функции. На заданном интервале функция имеет 6 экстремумов. Таким образом, касательная к графику функции параллельна прямой y = 18 или совпадает с ней в 6 точках.
На рисунке изображен график производной функции определенной на интервале
Найдите количество точек, в которых касательная к графику функции
параллельна прямой
или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой y = x − 7 или совпадает с ней, их угловые коэффициенты равны 1. Найдем количество точек, в которых f ‘(x0) = 1, это соответствует количеству точек пересечения графика производной с прямой y = 1. На данном интервале таких точек 4.
На рисунке изображен график производной функции f(x), определенной на интервале (−9; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = −x − 12 или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой y = −x − 12 или совпадает с ней, их угловые коэффициенты равны –1. Найдем количество точек, в которых y‘(x0) = −1, это соответствует количеству точек пересечения графика производной с прямой y = −1. На данном интервале таких точек 3.
На рисунке изображен график производной функции f(x), определенной на интервале (−9; 3). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = 2x − 19 или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой y = 2x − 19 или совпадает с ней, их угловые коэффициенты равны 2. Найдем количество точек, в которых производная равна 2: геометрически это соответствует количеству точек пересечения графика производной с прямой y = 2. На данном интервале таких точек 3.
На рисунке изображен график производной функции f(x), определенной на интервале (−10; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = −2x − 11 или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна прямой y = −2x − 11 или совпадает с ней, их угловые коэффициенты равны –2. Найдем количество точек, в которых это соответствует количеству точек пересечения графика производной с прямой y = −2. На данном интервале таких точек 5.
На рисунке изображен график производной функции Найдите абсциссу точки, в которой касательная к графику
параллельна оси абсцисс или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, она имеет вид и её угловой коэффициент равен 0. Следовательно, мы ищем точку, в которой угловой коэффициент, равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс. Поэтому искомая точка
разве угловой коэффициент равен нулю не в точках с абциссой 1 и 4?
На рисунке изображен график ПРОИЗВОДНОЙ
На рисунке изображён график — производной функции
определённой на отрезке (−11; 2). Найдите абсциссу точки, в которой касательная к графику функции
параллельна оси абсцисс или совпадает с ней.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, она имеет вид и её угловой коэффициент равен 0. Следовательно, мы ищем точку, в которой угловой коэффициент равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс. Поэтому искомая точка