при какой температуре алмаз превращается в графит
Алмаз превратили в графит рентгеновским лазером
Превращение алмаза в графит в представлении художника
Как правило, фазовые превращения, например, переход из алмаза в графит или из белого олова в серое, происходят под действием температуры. Но существуют и необычные исключения. Оказывается, превращение алмаза в графит при облучении мягким рентгеновским излучением происходит по механизму, не связанному с нагревом материала. Этот процесс по меньшей мере в десять раз быстрее термического. Об этом сообщает международная группа физиков под руководством Франца Тавелла (SLAC, США), Свена Толеикиса (DESY, Германия) и Беаты Заи (Институт ядерной физики, Краков) в журнале High Energy Density Physics, кратко о работе рассказывает пресс-релиз DESY.
И алмаз, и графит состоят из одних и тех же атомов углерода, по-разному упакованных в материале — несмотря на огромную разницу в свойствах. Поместив графит в условия высокой температуры и давления можно заставить атомы поменять свою упаковку — это один из двух основных способов синтеза алмазов в промышленности. Возможен и обратный процесс: под действием тепла алмаз может обратно превратиться в графит.
Источником тепла может быть как печь, так и сфокусированный луч лазера. В последнем случае перестройка атомов происходит в несколько последовательных шагов: поглощение фотонов электронами, передача энергии от возбужденных электронов в колебания кристаллической решетки, изменение структуры. Этот процесс занимает несколько пикосекунд — триллионных долей секунды. В 1979 году физики обнаружили, что иногда превращения в полупроводниках могут протекать и на меньших временных масштабах — менее пикосекунды. За это время энергия просто не успеет перейти от возбужденных электронов к кристаллической решетке. Это указало на новый не связанный с передачей тепла механизм фазовых переходов. В его основе лежит перестройка поверхности потенциальной энергии в кристалле из-за возбуждения небольшого количества электронов.
Синее — исходное состояние алмаза. Желтое — момент облучения. Красное — фазовый переход от алмаза к графиту
Температура плавления и характеристики алмаза
Температура плавления алмаза — это одна из характеристик драгоценности, которая до сих пор не изучена в полном объеме. Камень имеет уникальные свойства, которые ценятся не только в ювелирном деле, но и в промышленности. И температура плавления не стала исключением из правил.
Некоторые минералоги и исследователи объясняют такие странные характеристики алмаза его космическим происхождением. То есть, предполагают, что материал попал на планету после падения большого количества метеоритов и остался в недрах земли.
Базовые характеристики алмаза
В качестве примера можно привести то, что алмаз обладает наивысшей твердостью по шкале Мооса, при этом камень хрупкий. Вещество является диэлектриком и изолятором. Алмаз обладает самой прочной упаковкой, то есть кристаллической решеткой. Структура состоит из одного атома углерода, который в природе является горючим и имеет аллотропные модификации. Самой известной формой элемента, помимо алмаза, является графит.
Ученые неоднократно проводили опыты, а также эксперименты, которые были связаны с модификациями углерода. В частности, во время плавления хотели добиться и посмотреть, не будет ли перехода алмаза в графит и наоборот. Одними из последних исследователей, которые занимались вопросом плавления, была группа физиков из университета в Калифорнии. Опыт проводился в 2010 году, и целью ученых был перевод алмаза в жидкое состояние.
Температура плавления алмаза
Сложность заключалась в том, что с повышением температуры вещество превращается в графит. Поэтому, вместе с температурой, приходилось повышать и давление. Интересно, что в обратную сторону процесс провести нельзя: графит не превращается в алмаз без затравки даже под действием высоких температур.
Показатель плавления вещества
Если верить уже проведенным исследованиям, то показатели плавления алмаза находятся на таком уровне:
С доступом кислорода вещество сгорает при температуре 850-1000 градусов Цельсия. Алмаз горит синим пламенем, после чего исчезает бесследно, превратившись в углекислый газ. В этом убедились ученые из Италии Тарджони и Аверани на собственном опыте. Еще в 1694 году они решили провести эксперимент и соединить два мелких бриллианта в один крупный. Несколько попыток закончилось сгоранием драгоценностей.
Кривую плавления алмаза построить тяжело, она получается аномальной, учитывается и наличие кислорода в процессе. Сходства и стандартов, как у других веществ, нет. Поэтому показатель неточный и может измениться после очередных экспериментов.
Ученые взяли алмаз небольшого веса, и плавление происходило под действием ударной волны. Волну создавали наносекундные лазерные импульсы. Жидкий алмаз, то есть расплавленный материал, действительно был получен в ходе эксперимента при давлении в 40 миллионов атмосфер.
Но при постепенном повышении давления и температуры до 50 000 по Кельвину на жидкой поверхности алмаза стали появляться твердые частицы. При этом неожиданным открытием стало то, что частицы не тонут в жидкости, а плавают, как кубики льда, напоминая айсберги. Жидкость не меняется и не кипит в процессе дальнейшего нагревания. При понижении давления и сохранении температуры на том же уровне частицы становились больше и склеивались в одно целое. В дальнейшем алмаз постепенно переходил в твердое состояние. Несколько «айсбергов» склеиваются между собой, жидкость не испаряется в процессе.
В обычных условиях на земле такого состояния углерода добиться нельзя. Но исследователи думают, что в недрах таких планет, как Нептун и Уран, углерод содержится именно в таком кипящем состоянии. Там есть целые океаны кипящих алмазов.
Подтверждения или материалов на эту тему нет, но большинство ученых согласно с гипотезой. А также это предположение объясняет странное действие магнитных полей планет. Эти небесные тела являются единственными в Солнечной системе, у кого нет четких географических полюсов, они все время перемещаются. Тщательнее исследовать планеты не получается, поскольку моделирование ситуации на земле или отправление экспедиций к этим планетам — дорогостоящий и трудоемкий процесс.
А вот еще один эксперимент был посвящен превращению алмаза в углекислый газ. Для этого ученые воздействовали на алмаз мощными ультрафиолетовыми лучами, после чего в камне образовывались углубления в месте воздействия. Камень выгорает и переходит в газообразное агрегатное состояние.
Производство лазеров на основе алмазов — изобретение, не имеющее смысла. Такие приборы ломаются и становятся непригодными к использованию. Но, конечно, не стоит переживать о том, можно ли носить камень летом под действием солнца — обычный ультрафиолет не повредит алмазу. Чтоб удалить один микрограмм минерала, нужно выдерживать камень под ультрафиолетом почти 10 миллиардов лет.
Интересен и тот феномен, что во время пайки изделий с бриллиантами в ювелирных магазинах, камень поддается нагреванию и обработке. Часто ювелиры паяют изделия с бриллиантами. Но такие действия могут закончиться помутнением камня, и владельцу придется отдавать его на переогранку. Опасно находиться над горелкой бриллиантам с микротрещинами или другими повреждениями — хрупкий камень рассыплется на части.
Каждый эксперимент внес свой вклад в исследование вещества под названием алмаз. К сожалению, до конца феномен плавления алмаза объяснить не удается. Зато новым ученым есть к чему стремиться, поле для исследований готово и человечество ждет открытий. Характеристика алмаза пригодится в производстве и в искусственном выращивании вещества. А также она поможет в исследовании космоса.
ПЕРЕХОД АЛМАЗА В ГРАФИТ И НАОБОРОТ
Непосредственное превращение графита в алмаз требует высокой температуры и соответственно высокого давления. Поэтому для облегчения синтеза используют различные агенты, способствующие разрушению или деформации решетки графита, или снижающие энергию, необходимую для ее перестройки. Такие агенты могут оказывать каталитическое действие. Процесс синтеза алмаза объясняют также растворением графита или образованием неустойчивых соединений, выделяясь из раствора или при распаде соединений, в виде алмазов. Роль таких агентов могут играть некоторые металлы (например, их сплавы).
Необходимое для синтеза давление создается мощными гидравлическими прессами (усилием в несколько и десятки МН), в камерах с твердой сжимаемой средой. В сжимаемой среде располагается нагреватель, содержащий реакционную смесь, состоящую из графита и металла, облегчающего синтез алмаза. После создания нужного давления смесь нагревается электрическим током до температуры синтеза, который длится от нескольких секунд до нескольких часов. Для сохранения полученных алмазов в нормальных условиях прореагировавшая смесь охлаждается до комнатной температуры, а затем снимается давление.
Рис. 4.1 ? Зависимость перехода графита в алмаз и наоборот
В решётке каждый атом окружён 4 ближайшими соседями, расположенными в вершинах тетраэдра, с которыми он связан прочными ковалентными силами
Алмаз очень твёрд и прочен и является идеальным абразивным материалом
Графит легко скользит по плоскостям, которые связаны слабыми силами Ван-дер-Ваальса
Расстояние между соединениями
Атом углерода окружен тремя соседними с расстоянием 1,42 нм.
от 3470 до 3560 кг/м 3
Бесцветные, белые, голубые, зеленые, желтоватые, коричневые, красноватые, темно-серые (до черного)
Серый, чёрный, стальной
На воздухе алмаз сгорает при 850-1000°С. При 3600°С и выше превращается в графит
Температура плавления графита 3850 ± 50°С
Зависимость устойчивости от давления
Устойчив при более высоком давлении
При давлении, меньшем равновесного, устойчив
Промышленность (приборостроение, резцы, фильеры),ювелирные изделия и др.
Огнеупорные материалы, противопригарные краски, покрытия для сопел ракетных двигателей, изготовление щелочных аккумуляторов и др.
Алмазы могут получаться и без участия катализаторов при сжатии графита в ударной волне. Этот метод пока не получил промышленного применения.
Рис. 4.2 ? Атом графита и алмаза
Рис. 4.3 ? Гексагональная форма графита
Рис. 4.4 ? Кубическая форма алмаза
Действительно ли бриллианты вечны?
Или алмазы могут просто сгореть до углекислого газа.
Итак, почему алмаз может превратиться в графит или гореть? И как долго это может длиться?
Сам по себе углерод есть углерод. Элемент с атомным номером 6 и неметалл.
Но когда углерод связывается с другими атомами углерода, он может создавать множество структур, каждая из которых обладает уникальным набором свойств. Эти разные формы называются аллотропами.
У углерода есть множество аллотропов. Это связано с его валентностью. У углерода есть четыре доступных электрона, которыми он может поделиться с другими элементами для создания соединений. Эта валентность дает ему уникальную гибкость, позволяющую образовывать различные структуры при соединении с другими атомами углерода.
Алмаз имеет октаэдрическую структуру, в которой каждый отдельный атом углерода присоединяется к четырем другим атомам углерода, образуя своего рода трехстороннюю пирамидальную структуру.
Обратите внимание, как самые верхние углеродные связи в алмазе выглядят как трехсторонняя пирамида.
Другие углеродные аллотропы образуют листы (графит и графен), сферы (бакминстерфуллерен) и даже некоторые странные наноструктуры.
Графит, а не алмаз, является наиболее стабильным аллотропом углерода.
Хотя тетраэдрическая структура алмаза делает его самым твердым веществом, известным человечеству, это не самая стабильная форма углерода.
Этот титул принадлежит графиту.
Теперь представьте, что мяч застревает в лунке меньшего размера (меньшей долине, в которой можно увидеть мяч).
Шар устойчив в меньшем колодце, но поскольку колодец находится выше по сравнению с дном долины, это не самое стабильное его состояние. Но мяч останется там, если не будет проведена работа по вытаскиванию мяча из колодца на дно долины.
Представление о стабильности химических веществ.
С точки зрения химии, алмаз кинетически стабилен, потому что он находится в ловушке в колодце, тогда как он термодинамически нестабилен, потому что существует более стабильная форма графита, в которую он может превратиться при правильных условиях.
Итак, почему алмазы не превращаются в графит?
Итак, если есть более стабильная форма, почему не все алмазы превратились в графит? По двум причинам.
Во-первых, алмаз устойчив в условиях, существующих на Земле. Кроме того, графит всего на несколько электронвольт стабильнее алмаза (на Земле). Разница в устойчивости алмаза и графита на Земле не так уж и велика.
Во-вторых, для преобразования алмаза в графит требуется большая энергия.
Другими словами, энергия, необходимая для того, чтобы вывести алмаз из колодца на дно долины, где он превратится в графит, очень велика.
Химики и геологи пытались превратить алмаз в графит. Они обнаружили, что при сжатии алмаза индентором (в основном острым предметом, которым можно протыкать алмаз) поверхность алмаза, контактирующая с индентором, превращается в графит.
Алмазы тоже имеют свою слабость
Однако не подвергайте алмазы воздействию высоких давлений, если вы хотите превратить его в графит. Алмазы более стабильны при высоком давлении, чем графит, именно поэтому они образуются в мантии Земли (и даже иногда на астероидах). Однако при определенных условиях алмазы могут превращаться в графит даже под высоким давлением.
Как долго прослужат алмазы?
Учитывая вышесказанное, бриллиант на вашем обручальном кольце или в короне королевы Англии, скорее всего, будет длиться вечно.
Но если вы используете свой алмаз в качестве инструмента для резки или шлифовки вещей, особенно вещей, сделанных из железа, тогда вы можете обратить на это внимание.
Часть алмаза, контактирующая с железом (или чем-то еще, что алмаз режет), может достаточно нагреться, чтобы превратиться в графит. Если даже крошечные кусочки алмаза превращаются в графит каждый раз, когда вы что-то режете, алмаз в конечном итоге полностью превратится в графит.
Или вы можете просто сжечь алмаз с помощью всего лишь увеличительного стекла и солнца. Именно это сделали в 1694 году два человека, натуралист Джузеппе Аверани и врач Чиприано Тарджони из Флоренции. Они взяли увеличительное стекло и направили солнечный свет на алмаз, и камень исчез.
При какой температуре плавится алмаз
Алмаз — драгоценный камень, но его свойства физики оценили по достоинству только в XVI веке. И это несмотря на то что камень был найден несколькими столетиями раньше. Конечно, чтоб оценить всю значимость минерала, потребовалось провести немало опытов.
Они дали информацию о том, какая твердость у камня, температура плавления алмаза, а также другие физические характеристики. Но с тех пор камень используют не только в качестве красивого аксессуара, но еще и в промышленных целях.
11 ГПа. На воздухе алмаз сгорает при 850—1000 °C, а в струе чистого кислорода горит слабо-голубым пламенем при 720—800 °C, полностью превращаясь в углекислый газ.
Оценка проводилась в специальных лабораториях. И в результате был выяснен химический состав алмаза, строение его кристаллической решетки, а также открыто несколько феноменов.
Опыты, связанные с температурой плавления
Как известно, кристаллическая решетка вещества имеет форму тетраэдра с ковалентными связями между атомами углерода. Возможно, что именно такая структура стала причиной нескольких открытий, связанных с плавлением алмаза.
Энциклопедии минералов дают показатели плавления алмазов 3700-4000 градусов по Цельсию. Но это не совсем точная информация, поскольку они не поддаются общепринятым закономерностям.
В частности, во время плавления были обнаружены такие эффекты:
Для этого они использовали импульсы лазера, которые действовали на камень несколько наносекунд. При этом камень в жидком виде был получен при давлении, в 40 миллионов раз превосходящем атмосферное на уровне моря.
Кроме того, если давление понижалось до 11 миллионов атмосфер, а температура при этом на поверхности минерала была 50 тысяч Кельвинов, то на камне появлялись твердые кусочки. Они не тонули в остальной жидкости и внешне напоминали кусочки льда.
При дальнейшем понижении показателя давления, кусочки скапливались, образовывая «айсберги» на плаву. Ученые сопоставили, что так ведет себя углерод в составе планет Нептуна и Урана, на поверхности этих небесных тел тоже существуют океаны с жидким алмазом. Но чтоб доказать это предположение, необходимо отправить спутники к планетам, что на сегодняшний момент невозможно быстро осуществить.
Поэтому ультрафиолетовые лазеры на основе алмаза быстро ломаются и становятся непригодными к использованию. Но не следует переживать по поводу того, что бриллиант на украшении исчезнет со временем: чтоб удалить один микрограмм минерала, придется держать алмаз под ультрафиолетом около 10 миллиардов лет.