при какой температуре деградирует процессор
Почему компьютерные чипы стали быстрее «стареть» и что с этим делать
На прошлой неделе на тематическом ресурсе Semiconductor Engineering вышла статья, которая выделяет тренд «старения» чипов в ЦОД. Мы решили поподробнее взглянуть на материал и рассказать, что происходит в этой сфере.
На шестой странице отчета McKinsey & Company отмечено, что в 2008 году процент загруженности вычислительных систем дата-центра не превышал 6%. Но с развитием облачных ЦОД, ростом популярности виртуальной инфраструктуры и IaaS тренд начал меняться. Как отмечает компания NRDC в своем отчете Data Center Efficiency Assessment, в 2014 году «процент занятости» серверов в облачной среде составил уже 65%.
Это связано с тем, что сегодня одним из базовых критериев выбора облачного провайдера является доступность. Поэтому поставщики стремятся минимизировать допустимое время простоя облачной платформы. Например, если по SLA провайдер обещает доступность «три девятки», то время простоя за год может составлять не более 9 часов. Такие условия предъявляют серьезные требования к инфраструктуре, поэтому провайдеры используют балансировщики нагрузки, чтобы эффективно распределять ресурсы CPU и памяти и обеспечивать непрерывность рабочих процессов клиентов.
Отметим, что такой подход дополнительно позволяет сэкономить на охлаждении и обслуживании оборудования — по данным исследования Uptime Institute, оптимизация парка серверов в дата-центрах мира высвободит порядка 30 млрд долларов. За счет этого ЦОД и IaaS-провайдеры смогут уменьшить стоимость услуг и сделать их еще эффективнее.
Проблема разогрева
Однако, как отмечает автор статьи на Semiconductor Engineering, сейчас в ряде ЦОД усиленная нагрузка на процессоры приводит к их повышенному разогреву, что ускоряет старение чипов. Считается, что при определённом соотношении энергии активации устройства (0,8 eV/K) и его рабочей температуры (75–125°C), каждые 10 градусов сверх нормы могут уменьшить срок его службы в два раза.
При этом повышение температуры может приводить к сбоям, которые довольно сложно диагностировать. Речь идет о так называемом эффекте электромиграции. Он проявляется в скачках напряжения, приводящих к случайным замыканиям одного или нескольких контактов и нарушению работы схем (появлению задержек и даже поломке). Примером подобной ситуации может служить выход из строя части жестких дисков WD через год работы — причиной была электромиграция в одном из используемых в HDD контроллеров.
Испытание для инженеров
Чтобы снизить «уровень стресса» для чипов и замедлить износ электроники, компании используют различные технологии. Например, САПР для моделирования работы чипов перед передачей их в производство. Во время симуляций проводится проверка соединений и параметров электропитания, анализ статических рисков сбоя и оценка влияния электромагнитного поля.
Например, системы автоматизированного проектирования помогают оценить влияние электромиграции и отметить места, в которых требуется расширение соединений между транзисторами или увеличение числа контактов, чтобы предотвратить преждевременный выход системы из строя.
Что касается температурного моделирования, то, как говорит Ральф Айверсон (Ralph Iverson), инженер из отдела научных исследований компании Synopsys, занимающейся разработкой САПР, для отслеживания перегревов используется модель «случайного блуждания». С её помощью производят оптимизацию целевой функции (траектории распространения тепла) и предсказывают влияние температуры на платы и чипы.
/ фото ИТ-ГРАД Unboxing серверов Cisco UCS M4308
Другое направление — разработка систем для отслеживания «старения» чипов в реальном времени. Например, исследователи из Мюнхенского технического университета предложили оценивать степень деградации схемы путем отслеживания задержки, с которой по ней проходит ток. Специальный программный контроллер оценивает задержку прохождения сигнала и сообщает о превышении допустимого уровня деградации электронного устройства. При этом система может автоматически снизить частоту работы чипа и скорректировать рабочее напряжение, пока устройство не будет заменено.
Поиск новых материалов
Разработчики электроники также начинают обращать внимание на новые материалы, которые бы выдерживали более высокие нагрузки, чем кремний. Например, одним из потенциальных материалов, который рассматривается в качестве замены кремнию, является нитрид галлия (GaN).
Этот полупроводник имеет более высокую подвижность носителей заряда и больший коэффициент теплопроводности. За счет этого транзисторы на основе нитрида галлия меньше в размерах и обладают большими показателями мощности. Например, нитрид галлиевые транзисторы используют при создании и развертке широкополосных беспроводных сетей, в том числе для обеспечения работы дата-центров.
Также исследуется возможность применения таких материалов, как антимониды и висмутиды. Они могут стать основой инфракрасных сенсоров для использования в телекоммуникационном оборудовании. Другой вариант — соединения цинка и кадмия с теллуром. В частности, их потенциал может быть полезен для создания альтернативных источников электроэнергии (солнечных панелей).
Однако и сам кремний сбрасывать со счетов ученые не намерены. Исследователи из REAP Labs Университета Тафтса «дают кремнию новую жизнь».
Они работают в области «кремниевой фотоники», создавая электронно-оптические микросхемы на одном кристалле кремния. Это дает чипам возможность взаимодействовать посредством оптических, а не электрических сигналов, что ускоряет перенос больших массивов информации и снижает влияние электромагнитных помех на систему.
Работают в этой области и в IBM. Компания уже смогла разместить устройства, выполненные по технологии кремниевой фотоники, прямо на процессорном чипе.
Подобные технологии позволят создать принципиально новые вычислительные системы, которые бы выдерживали повышенные нагрузки при работе.
Здравствуйте.Кто разбирается в таком понятии как «Деградация процессора»,помогите пожалуйста.
если вопрос в том «мог или не мог», то ответ: мог
вам, наверно, надо кулер сменить всего-лишь. для Wolfdale 90гр не очень страшно.
В данных условиях, может произойти миграция электронов в полупроводниках транзисторов процессора. То есть из изолятора, они превратятся в проводник с высоким сопротивлением.
То есть, электроны могут в определённый момент перескочить «не туда» и там остаться. Это приведёт к неправильному переключению транзистора, то есть ошибке, которая потом влечёт другие множественные. Часто повреждается и кэш-память процессора (занимает 10-60% транзисторного бюджета процессора), что не так опасно. Ведь кэш-память процессора, имеет систему исправления ошибок (ECC).
Если процессор уже деградировал, то для предотвращения ошибок, может помочь понижение частоты функционирования, что разгрузит повреждённый транзистор и следовательно, он будет справляться со своей задачей какое то время. В большинстве случаев помогает и комбинированное понижение напряжения, совместно с частотой.
Что не стоит делать, чтобы избежать деградации процессора:
· Для каждой архитектуры процессора, есть пороговое значение напряжения, при котором он может функционировать долгое время без повреждений. Данные значения обычно прописаны в спецификациях или на сайте производителя. Не повышайте напряжение процессора выше этого значения. В любом случае не стоит повышать напряжение выше 1.38 В. Производители отмечают именно эту максимальную цифру, хотя реально к деградации, хоть и растянутой по времени, приводит напряжение выше 1.4 В.
· Не допускайте долговременного функционирования процессора при критической температуре. Данная температура прописана в спецификациях. Её превышение на длительное время, может привести к повреждению процессора и миграции электронов. Позаботьтесь о качественном охлаждении процессора.
При какой температуре деградирует процессор
Пользователь реддита под именем PM_ME_ThermalPaste (он же ClockCruncher на HWbot) опубликовал на днях результаты своего эксперимента по нахождению безопасного порога напряжения при разгоне процессоров Райзен второго поколения. К делу он подошел серьезно и использовал четыре одинаковых комплекта топового железа, которые включали в себя материнскую плату Crosshair VII Hero, 360-мм водянку и комплект памяти на самсунг B-die, работающий при напряжении 1.4 вольта. По истечении шести месяцев были получены следующие данные:
I tested the each 2700x at a different voltage ranging from 1.375v to 1.425, here are the voltages for each 2700x and their temps at each voltage.
Как можно видеть, три экземпляра из четырех рано или поздно потеряли 100 мгц от стабильного разгона при использовании в бытовых задачах, и только один процессор, напряжение которого было ограничено на отметке 1,375в, сохранил изначальный разгонный потенциал. Во всех случаях температура не превышала 65 градусов, поэтому влияние высоких температур винить не приходится.
Следует уточнить, что полученные результаты распространяются только на ручной разгон с фиксацией постоянного напряжения. Хотя автоматический буст и предусматривает подачу напряжения свыше 1.4в, это можно считать относительно безопасным, поскольку воздействие ограничено по времени. Но настроить понижающий офсет пожалуй все-равно не помешает :). Лично же для себя я сделал вывод, что не следует повышать напряжение на Райзены свыше 1.35в на постоянной основе.
Деградация процессора. Актуальность проблемы в наше время
Ежегодно лидеры рынка демонстрируют качественный и функциональный рост своей продукции. Проектируют, создают и внедряют новые технологии в современные процессоры. Однако, всё ли так гладко? Смогли ли производители разрешить старые, но и по сей день актуальные вопросы? Погнали.
реклама
На написание этой статьи меня подтолкнула случайная новость, суть в том, что «синие» отозвали часть чипов семейства Apollo Lake. Те, в свою очередь, были подвержены деградации шины LPC. Несмотря на то, что проблема была актуальна для бюджетного ряда, и уже были выпущены обновленные модели, лишенные этого недостатка, остается вопрос. Насколько это актуально в наше время, и стоит ли думать об этом при покупке новых чипов.
Теория
В подобном случае нарушается внутренняя структура чипа, и сигналы, которые он получает, будут обработаны с ошибкой, или и вовсе не будут завершены. Также стоит отметить, что чаще поражаются участки, ответственные за работу с интерфейсами и кэш памятью.
реклама
В свою очередь, чаще всего причиной появления этого недуга действительно является неправильная эксплуатация. Завышенное напряжение или высокие температуры. Например, если температура интенсивно скачет от минимальных до максимальных значений.
Что по разгону?
Любой разгон процессора означает повышение тактовых частот, вместе с напряжением, которое подаётся на чип. Но, означает ли это неотъемлемую деградацию? Нет. И вот почему.
Новые, впрочем как и многие предыдущие линейки процессоров, имеют разгонный потенциал. И при любых разгонных манипуляциях стоит помнить, как оптимально поднять частоту, напряжения, и обеспечить достаточное охлаждение.
реклама
Заключение
реклама
Советы, как не столкнуться с подобным, достаточно просты. Не поднимать лишний раз допустимый порог напряжения. Не допускать критической температуры на долгий промежуток работы. Если вы уже столкнулись с этим, имеет смысл попытаться снизить частоту с напряжением к начальным, или более низким значениям.
Десять мифов о процессорах, про которые пора забыть
С компьютерным железом всегда было связано много мифов — часть из них действительно в некоторых случаях имеет смысл, но хватает и укоренившихся, типа «чем тяжелее блок питания, тем он лучше», или «чем больше видеопамяти, тем быстрее видеокарта». И в этой статье я разберу основные мифы, связанные с процессорами.
1. Чем больше частота, тем быстрее процессор
Миф уходит корнями в 90-ые, когда многие пользователи, дабы не разбираться в непонятных Intel 386, 486 и Pentium просто смотрели на частоту — если у какого-то процессора она была выше, то он действительно оказывался быстрее. Однако сейчас это в общем и целом не верно: процессоры могут иметь различные архитектуры с абсолютно разной производительностью на герц, поэтому какой-нибудь Apple A7 с частотой в 1.3 ГГц оказывается на уровне Snapdragon 800 с частотой в 2.2 ГГц и в этом нет ничего странного. Но если речь идет о процессорах одного поколения и одной линейки, то это в целом работает: так, i5-8400 с частотой в 2.8 ГГц действительно медленнее i5-8500 с частотой в 3 ГГц.
2. От разгона процессоры сгорают
Стоит различать программные и «железячные» параметры процессора. Так, частота — это чисто программный параметр: к примеру, для энергосбережения она может снижаться до сотен мегагерц, а при сильной нагрузке взлетать до нескольких гигагерц. Поэтому банальное увеличение частоты никак навредить не может — максимум вы получите нестабильную работу процессора, но сжечь его таким способом точно не сможете.
Совсем другое дело — напряжение. Это — «железячный» параметр: с одной стороны, чем выше напряжение, тем более высокие частоты становятся доступны процессору. С другой стороны, у каждого процессора есть безопасный диапазон напряжений, и при выходе из него есть ненулевой шанс обеспечить себе поход в магазин за новым CPU.
3. Высокие температуры быстро убивают процессор
Есть мнение, что работая при температурах, близких к максимальным, процессор проживет меньше. С физической точки зрения смысл в этом есть — при высоких температурах деградация кремниевого кристалла идет быстрее. Но тут есть два важных замечания: во-первых, критические температуры, которые указывают производители, берутся с хорошим запасом зачастую в пару десятков градусов. Во-вторых, срок жизни кремниевого кристалла — это многие десятилетия (сейчас хватает самолетов начала 90-ых годов, «мозг» которых — Intel 386 тех же лет, и они отлично работают), поэтому незначительное уменьшение срока жизни при нагреве вы гарантированно не заметите, сменив процессор гораздо раньше.
А вот что действительно может заставить деградировать процессор быстрее, так это повышение напряжения до близких к критическим: в таком случае негативные эффекты можно увидеть уже спустя год — процессор будет не способен нормально работать на той частоте, с которой не было проблем при покупке, и придется ее снижать.
4. Архитектура ARM лучше x86
В последнее время ведутся разговоры о том, что ARM лучше x86, и скоро будет массовый переход компьютеров на новую архитектуру. Тут следует понимать, что нет такого понятия, как хорошая или плохая архитектура — есть понятие хороший или плохой процессор. Сравнение ARM и x86 выглядит как сравнение атомного реактора и двигателя внутреннего сгорания: вроде и тот и тот берут на входе топливо и дают на выходе энергию, но делают это абсолютно разными способами, и чтобы сравнить их производительность и эффективность нужно уже брать конкретных представителей и сравнить их между собой. Аналогично и с архитектурами — имеет смысл брать представителей каждой и сравнивать, после чего делать вывод, что какой-то из них быстрее/энергоэффективнее/дешевле, а другой наоборот.
5. Чем больше ядер у процессора, тем лучше
Казалось бы, это логично: больше ядер — значит больше и производительность. На практике же все зависит от конкретной задачи: к примеру, игры до сих пор не умеют толком работать больше чем с 8-12 потоками, и может получиться так, что топовый 32-ядерный Theadripper будет показывать лучшую производительность, если отключить у него половину ядер. Так что выбирать процессор нужно не по количеству ядер, а по возможностям программ, в которых вы работаете: еще один пример — Photoshop, в котором до сих пор пара быстрых ядер выдает куда лучший результат, чем десяток медленных. Более того — до сих пор хватает софта, который негативно реагирует на гиперпоточность: при отключении логических ядер производительность может не упасть, а, наоборот, вырасти.
6. Все эти Xeon с AliExpress — головная боль и танцы с бубнами
В последние несколько лет популярность Xeon с китайских торговых площадок выросла в разы (как и цены на них, увы). Причина этому проста: сервера переводят на более новое «железо», а старое, отработавшее 5-7 лет, списывают и продают за копейки, и его с большим удовольствием скупают китайцы. В итоге зачастую за 500-2000 рублей на Ali можно купить топовый процессор для своего сокета, десктопный аналог которого может стоить в разы дороже.
Основная критика идет из-за того, что с сокетом LGA775 и Xeon 5450 (и аналогами), с которых все и начиналось, действительно есть некоторые проблемы — нужно перепрошивать BIOS, не все платы совместимы и так далее. Но если брать более новые процессоры и сокеты — к примеру, Xeon X3440 и LGA1156 — то тут проблем нет вовсе, потому что поддержка серверных CPU уже есть в BIOS материнских плат на LGA1156, и вам просто нужно заменить процессор в сокете, после чего все заработает без всяких танцев с бубном.
7. Если процессор не раскрывает видеокарту, то это плохой процессор
«Секта раскрывателей» образовалась всего несколько лет назад, когда с выходом PlayStation 4 и Xbox One создатели игр сильно увеличили требования к CPU. Что «проповедует» эта «секта»? Если процессор не может нагрузить видеокарту на 100%, то значит вы или зря заплатили за такую мощную видеокарту, или зря сэкономили на процессоре.
Почему вообще это происходит? Процессор в игре отвечает за подготовку кадров для видеокарты, физику, искусственный интеллект и т.д., соответственно он может подготовить определенное количество кадров в секунду — к примеру, 50. Видеокарта тоже может обработать и вывести на экран определенное количество кадров, и если их больше 50 в секунду — она некоторое время будет простаивать, а процессор «молотить» на 100%, если меньше 50 — наоборот, видеокарта будет работать на 100%, а процессор будет временами «отдыхать».
Причем следует понимать, что и топовые процессоры тоже могут подготовить не больше определенного количества кадров в секунду, просто в их случае эти цифры могут быть больше 100, а то и 200 — с учетом того, что их зачастую ставят с топовыми видеокартами и ультра-настройками графики, то обычно упор идет именно в GPU. Но если вы искусственно возьмете и снизите разрешение до HD, а настройки до минимальных, то можно будет увидеть, как какой-нибудь i9-9900K будет работать на 100%, а GTX 1060 прохлаждаться.
Отсюда можно сделать легкий вывод — от процессорозависимости можно всегда легко избавиться. Видеокарта прохлаждается? Поднимите настройки графики, увеличьте разрешение — в итоге вы получите более красивую картинку с ровно такой же производительностью. Разумеется, мы не рассматриваем случай, когда процессор тянет игру еле-еле в 15 FPS — даже в таком случае зачастую можно будет полностью нагрузить видеокарту, но вот играть будет все равно не приятно, хотя и, конечно, красиво.
8. 100% нагрузка на процессор убивает его быстрее
Не самый частый миф — обычно проводится аналогия с техникой, которая при работе на максимум изнашивается и ломается быстрее. Но вот в процессоре нет механических частей, а деградация при нормальных условиях работы — процесс крайне медленный, и вы гораздо раньше купите себе новый ПК.
9. Водяное охлаждение процессора лучше воздушного
С точки зрения физики все верно: вода (или большая часть жидкостей) — куда лучший проводник тепла, чем воздух. Однако следует понимать, что на рынке существует множество так называемых супер-кулеров, способных отвести и 200, и 250 Вт от процессора, чего с головой хватит для 99% пользователей ПК, причем стоят они зачастую дешевле СВО с такими же возможностями.
Так что брать СВО имеет смысл только в двух случаях: или у вас в компактном корпусе стоит мощный процессор, и супер-кулеры в него не помещаются, или же у вас разогнанный под 4.5 ГГц топовый 32-ядерный AMD Threadripper, потребляющий 400+ Вт. Во всех других случаях «водянка» обычно становится пустой тратой денег и возможными проблемами в будущем.
10. Спецификации процессора на сайте производителя — правда в последней инстанции
Следует понимать, что очень многое на сайте производителя пишется с элементами маркетинга. Откровенной лжи, конечно же, не будет, но вот недоговорок может быть много: так, для нового i9-9900K указан теплопакет в 95 Вт, но вот на практике даже без разгона на максимальной частоте TurboBoost он может потреблять. аж до 200 Вт, то есть вдвое больше. Казалось бы, Intel врет? Ничуть — при родных 3.6 ГГц процессор действительно укладывается в 95 Вт, а TurboBoost — функция необязательная. Поэтому лучше смотреть реальную производительность и тепловыделение в обзорах.
Как видите, мифов о процессорах хватает. Знаете какие-нибудь еще? Пишите об этом в комментариях.
может потреблять. аж до 200 Вт
Процессор есть тепло, немудрено почему у меня дома все еще холодно!
а практике даже без разгона на максимальной частоте TurboBoost он может потреблять. аж до 200 Вт
WanRoi
вполне годная и полезная инфа
Такое чувство, что 7 пункт писал школьник. Про пропускную способность и её ограничения, влияние на загрузку видяхи ничего не сказано, как и про потоки.