при какой температуре вода распадается на водород и кислород
Проект Заряд
Автономное энергоснабжение. Свободная и альтернативная энергия будущего. Бестопливные генераторы и «вечные двигатели» в каждый дом!
Генератор водорода путем ослабления межатомных связей высокой температурой
Предложенный способо основан на следующем:
Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок.
Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб.
Первый вариант
Работа и устройство установки первого варианта (схема 1)
Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550 o C. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с.
Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с.
Один литр воды содержит 124 л водорода и 622 л кислорода, в пересчете на калории составляет 329 ккал.
Перед пуском установки стартер разогревается от 800 до 1000 o C /разогрев производится любым способом/.
Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550 o C, свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами.
В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В. Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм.
Труба — электрод представляет собой сетку, которая не должна создавать сопротивление для входа в электрод водорода. Электрод крепится к корпусу трубы на проходных изоляторах и по этому же креплению подается высокое напряжение. Конец трубы отрицательного электрода оканчивается электроизоляционной и термостойкой трубой для выхода водорода через фланец камеры. Выход кислорода из корпуса камеры разложения через стальной патрубок. Положительный электрод /корпус камеры/ должен быть заземлен и заземлен положительный полюс у источника питания постоянного тока.
Выход водорода по отношению к кислороду 1:5.
Второй вариант
Работа и устройство установки по второму варианту (схема 2)
Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС/.
Работа установки, как и в первом варианте, начинается с приготовления перегретого пара в стартере. Но этот стартер отличается от стартера в 1-м варианте. Отличие заключается в том, что на конце стартера приварен отвод, в котором смонтирован переключатель пара, имеющий два положения — «пуск» и «работа».
Полученный в стартере пар поступает в теплообменник, который предназначен для корректировки температуры восстановленной воды после окисления в котле /К1/ до 550 o C. Теплообменник /То/ — труба, как и все изделия с таким же диаметром. Между фланцами трубы вмонтированы трубки из жаропрочной стали, по которым проходит перегретый пар. Трубки обтекаются водой из замкнутой системы охлаждения.
Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки.
Водород и кислород из камеры разложения поступают в горелку котла 1, в которой водород поджигается зажигалкой, — образуется факел. Факел, обтекая котел 1, создает в нем рабочий пар высокого давления. Хвост факела из котла 1 поступает в котел 2 и своим теплом в котле 2 подготавливает пар для котла 1. Начинается непрерывное окисление газов по всему контуру котлов по известной формуле:
В результате окисления газов восстанавливается вода и выделяется тепло. Это тепло в установке собирают котлы 1 и котлы 2, превращая это тепло в рабочий пар высокого давления. А восстановленная вода с высокой температурой поступает в следующий теплообменник, из него в следующую камеру разложения. Такая последовательность перехода воды из одного состояния в другое продолжается столько раз, сколько требуется получить от этого собранного тепла энергии в виде рабочего пара для обеспечения проектной мощности ВЭС.
После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения «пуск» переводится в положение «работа», после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя.
Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины.
Недостаток силовых установок для ВЭС — это их громоздкость. Например, для ВЭС на 250 МВт нужно разлагать одновременно 455 л воды в одну секунду, а для этого потребуется 227 камер разложения, 227 теплообменников, 227 котлов /К1/, 227 котлов /К2/. Но такая громоздкость стократ будет оправдана уже только тем, что топливом для ВЭС будет только вода, не говоря уже о экологической чистоте ВЭС, дешевой электрической энергии и тепле.
Третий вариант
3-й вариант силовой установки (схема 3)
Это точно такая же силовая установка, как и вторая.
Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м 3 /ч и воду на образование рабочего пара 1620 м 3 /ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550 o C. Давление пара 250 ат. Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВт/ч.
Силовая установка на 250 МВт при размещении изделий на четырех этажах займет площадь 114 х 20 м и высоту 10 м. Не учитывая площадь под турбину, генератор и трансформатор на 250 кВА — 380 х 6000 В.
ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА
Изобретение может найти применение в промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое — воду при сохранении мощности этих установок.
ФОРМУЛА ИЗОБРЕТЕНИЯ
Способ получения водорода и кислорода из пара воды, включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 — 550 o C, пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.
Расщепление воды с эффективностью 100%: полдела сделано
Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии — водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз — очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.
Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции — восстановления — в видимом (солнечном) свете с энергетической эффективностью 100%, значительно превзойдя предыдущий рекорд 58,5%.
Осталось усовершенствовать полуреакцию окисления.
Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения — и выдают электроны.
В полуреакции окисления производятся четыре отдельных атома водорода и молекула О2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H2, производя полезную форму водорода — газ H2,
Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.
На такой эффективности каждый наностержень генерирует около 100 молекул H2 в секунду.
Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.
К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.
Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.
Научная работа опубликована в журнале Nano Letters (зеркало).
Способ получения водорода и кислорода из воды
Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Получают в незамкнутом пространстве перегретый водяной пар с температурой 500-550 o C. Перегретый водяной пар пропускают через постоянное электрическое поле высокого напряжения (6000 В) с получением водорода и кислорода. Способ прост в аппаратурном оформлении, экономичен, пожаро- и взрывобезопасен, высокопроизводителен. 3 ил.
Водород при соединении с кислородом-окислении, занимает первое место по калорийности на 1 кг топлива среди всех горючих используемых для поучения электроэнергии и тепла. Но высокая калорийность водорода до сих пор не используется в получении электроэнергии и тепла и не может конкурировать с углеводородным топливом.
Препятствием для использования водорода в энергетике является дорогой способ его получения, который экономически не оправдывается. Для получения водорода в основном применяются электролизные установки, которые малопроизводительны и энергия, затраченная на получение водорода, равна энергии, полученной от сжигания этого водорода.
Известен способ получения водорода и кислорода из перегретого водяного пара с температурой 1800-2500 o C, описанный в заявке Великобритании N 1489054 (кл. C 01 B 1/03, 1977). Этот способ сложен, энергоемок и трудноосуществим.
Наиболее близким к предложенному является способ получения водорода и кислорода из водяного пара на катализаторе при пропускании этого пара через электрическое поле, описанный в заявке Великобритании N 1585527 (кл. C 01 B 3/04, 1981).
Задачей, на которую направлено изобретение, является устранение вышеуказанных недостатков, а также получение дешевого источника энергии и тепла.
Это достигается тем, что в способе получения водорода и кислорода из пара воды, включающем пропускание этого пара через электрическое поле, согласно изобретению используют перегретый пар с температурой 500-550 o C и пропускают его через электрическое поле постоянного тока высокого напряжения, вызывая тем самым диссоциацию пара и разделение его на атомы водорода и кислорода.
Предложенный способ основан на следующем.
1. Электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды. Это подтверждается практикой при сжигании сухого каменного угля. Перед тем как сжигать сухой уголь, его поливают водой. Мокрый уголь дает больше тепла, лучше горит. Это происходит от того, что при высокой температуре горения угля вода распадается на водород и кислород. Водород сгорает и дает дополнительные калории углю, а кислород увеличивает объем кислорода воздуха в топке, что способствует лучшему и полному сгоранию угля.
2. Температура воспламенения водорода от 580 до 590 o C, разложение воды должно быть ниже порога зажигания водорода.
3. Электронная связь между атомами водорода и кислорода при температуре 550 o C еще достаточна для образования молекул воды, но орбиты электронов уже искажены, связь с атомами водорода и кислорода ослаблена. Для того, чтобы электроны сошли со своих орбит и атомная связь между ними распалась, нужно электронам добавить еще энергии, но уже не тепла, а энергию электрического поля высокого напряжения. Тогда потенциальная энергия электрического поля преобразуется в кинетическую энергию электрона. Скорость электронов в электрическом поле постоянного тока возрастает пропорционально квадратному корню напряжения, приложенного к электродам.
4. Разложение перегретого пара в электрическом поле может происходить при небольшой скорости пара, а такую скорость пара при температуре 550 o C можно получить только в незамкнутом пространстве.
5. Для получения водорода и кислорода в больших количествах нужно использовать закон сохранения материи. Из этого закона следует: в каком количестве была разложена вода на водород и кислород, в таком же количестве получим воду при окислении этих газов.
Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок.
Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб.
1. Работа и устройство установки первого варианта (схема 1).
Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550 o C. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с.
Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с.
Один литр воды содержит 124 л водорода и 622 л кислорода, в пересчете на калории составляет 329 ккал.
Перед пуском установки стартер разогревается от 800 до 1000 o C /разогрев производится любым способом/.
Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550 o C, свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами.
В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В. Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм.
Выход водорода по отношению к кислороду 1:5.
2. Работа и устройство установки по второму варианту (схема 2).
Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС/.
Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки.
После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения «пуск» переводится в положение «работа», после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя.
Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины.
3-й вариант силовой установки (схема 3).
Это точно такая же силовая установка, как и вторая.
Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м 3 /ч и воду на образование рабочего пара 1620 м 3 /ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550 o C. Давление пара 250 ат. Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВтч.
Изобретение имеет следующие преимущества.
1. Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды.
2. Небольшой расход воды при получении электроэнергии и тепла.
3. Простота способа.
4. Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима.
5. Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды.
6. Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода.
7. В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки.
8. Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы.
ПОЛУЧЕНИЕ ВОДОРОДА ТЕРМИЧЕСКИМ РАЗЛОЖЕНИЕМ ВОДЫ
Общеизвестно, что водяной пар при высоких температурах разлагается на водород и кислород Эти газы могут быть сепарированы с помощью соответствующей методики, например, при использовании палладиевого филь-
тра. Данная методика обсуждалась выше в параграфе об очистке водорода монооксида углерода СО. Хотя на первый взгляд этот способ получения во рода может показаться привлекательным, однако его практическая реализа» достаточно сложна.
Представим себе такой эксперимент. В цилиндрическом сосуде под п шнем находится 1 кмоль чистого водяного пара. Вес поршня создает в cocj постоянное давление, равное 1 атм. Пар в сосуде нагревают до температ> 3000 К. Указанные значения давления и температуры были выбраны произвс. но в качестве примера.
Если в сосуде находятся только молекулы Н20, то количество свобол энергии системы можно определить с помошью соответствующих таблиц TeD динамических свойств воды и водяного пара Однако на самом деле по край мере часть молекул водяного пара подвергается разложению на составляг ее химические элементы, т. е. водород и кислород:
Если бы все молекулы водяного пара диссоциировали, то в сосуде оказалась газовая смесь, содержащая 1 кмоль водорода и 0,5 кмоля кислорода. Количе^ свободной энергии этой газовой смеси при тех же значениях давления (1 а и температуры (3000 К) оказывается больше количества свободной энер чистого водяного пара. Отметим, что 1 кмоль водяного пара был преобразован 1 кмоль водорода и 0,5 кмоля кислорода, т. е. общее количество вещества те: составляет А’оГ)||( =1,5 кмоля. Таким образом, парциальное давление водорода б> равно 1/1,5 атм, а парциальное давление кислорода — 0.5/1,5 атм.
Общее количество газовой смеси (кмоль)
Чтобы определить точку равновесия, необходимо найти значение F при [20]
При какой температуре вода распадется на водород
Предложенный способо основан на следующем:
Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок.
Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб.
Первый вариант
Работа и устройство установки первого варианта (схема 1)
Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550oC. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с.
Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с.
Один литр воды содержит 124 л водорода и 622 л кислорода, в пересчете на калории составляет 329 ккал.
Перед пуском установки стартер разогревается от 800 до 1000oC /разогрев производится любым способом/.
Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550oC, свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами.
В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В. Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм.
Труба — электрод представляет собой сетку, которая не должна создавать сопротивление для входа в электрод водорода. Электрод крепится к корпусу трубы на проходных изоляторах и по этому же креплению подается высокое напряжение. Конец трубы отрицательного электрода оканчивается электроизоляционной и термостойкой трубой для выхода водорода через фланец камеры. Выход кислорода из корпуса камеры разложения через стальной патрубок. Положительный электрод /корпус камеры/ должен быть заземлен и заземлен положительный полюс у источника питания постоянного тока.
Выход водорода по отношению к кислороду 1:5.
Второй вариант
Работа и устройство установки по второму варианту (схема 2)
Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС/.
Работа установки, как и в первом варианте, начинается с приготовления перегретого пара в стартере. Но этот стартер отличается от стартера в 1-м варианте. Отличие заключается в том, что на конце стартера приварен отвод, в котором смонтирован переключатель пара, имеющий два положения — «пуск» и «работа».
Полученный в стартере пар поступает в теплообменник, который предназначен для корректировки температуры восстановленной воды после окисления в котле /К1/ до 550oC. Теплообменник /То/ — труба, как и все изделия с таким же диаметром. Между фланцами трубы вмонтированы трубки из жаропрочной стали, по которым проходит перегретый пар. Трубки обтекаются водой из замкнутой системы охлаждения.
Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки.
Водород и кислород из камеры разложения поступают в горелку котла 1, в которой водород поджигается зажигалкой, — образуется факел. Факел, обтекая котел 1, создает в нем рабочий пар высокого давления. Хвост факела из котла 1 поступает в котел 2 и своим теплом в котле 2 подготавливает пар для котла 1. Начинается непрерывное окисление газов по всему контуру котлов по известной формуле:
2H2 + O2 = 2H2O + тепло
В результате окисления газов восстанавливается вода и выделяется тепло. Это тепло в установке собирают котлы 1 и котлы 2, превращая это тепло в рабочий пар высокого давления. А восстановленная вода с высокой температурой поступает в следующий теплообменник, из него в следующую камеру разложения. Такая последовательность перехода воды из одного состояния в другое продолжается столько раз, сколько требуется получить от этого собранного тепла энергии в виде рабочего пара для обеспечения проектной мощности ВЭС.
После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения «пуск» переводится в положение «работа», после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя.
Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины.
Недостаток силовых установок для ВЭС — это их громоздкость. Например, для ВЭС на 250 МВт нужно разлагать одновременно 455 л воды в одну секунду, а для этого потребуется 227 камер разложения, 227 теплообменников, 227 котлов /К1/, 227 котлов /К2/. Но такая громоздкость стократ будет оправдана уже только тем, что топливом для ВЭС будет только вода, не говоря уже о экологической чистоте ВЭС, дешевой электрической энергии и тепле.
Третий вариант
3-й вариант силовой установки (схема 3)
Это точно такая же силовая установка, как и вторая.
Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м3/ч и воду на образование рабочего пара 1620 м3/ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550oC. Давление пара 250 ат. Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВт/ч.
Силовая установка на 250 МВт при размещении изделий на четырех этажах займет площадь 114 х 20 м и высоту 10 м. Не учитывая площадь под турбину, генератор и трансформатор на 250 кВА — 380 х 6000 В.
ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА
Изобретение может найти применение в промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое — воду при сохранении мощности этих установок.
ФОРМУЛА ИЗОБРЕТЕНИЯ
Способ получения водорода и кислорода из пара воды, включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 — 550oC, пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.
Высокотемпературный электролиз (также известен как электролиз водяного пара) – технология производства водорода и/или угарного газа из воды и/или углекислого газа с побочным продуктом в виде кислорода.
С экономической точки зрения высокотемпературный электролиз гораздо эффективнее, чем традиционный электролиз при комнатной температуре, так как некоторая часть энергии подается в виде тепла, более дешевого по сравнению с электричеством, а также потому, что реакция электролиза гораздо продуктивнее протекает при высоких температурах. Фактически при 2500C электрический ток не требуется, потому что вода распадается на водород и кислород путем термолиза. Подобные температуры являются практически нецелесообразными; предлагаемые ВТЭ работают в диапазоне 100-850C.
Увеличение КПД высокотемпературного электролиза лучше всего произойдет за счет оценки количества используемого электричества, поступающего из теплового двигателя, а затем – учета количества тепловой энергии, нужной для производства одного килограмма водорода (141,86 МДж), как во время самого процесса электролиза, так и во время производства электричества. При 100C требуется 350 МДж тепловой энергии (КПД – 41 %). При 850C требуется 225 МДж тепловой энергии (КПД – 64 %).
Материалы
Крайне важен подбор материалов для электродов и электролита в твердом оксидном электролизном элементе. Один из вариантов – диоксид циркония, стабилизированный оксидом иттрия в качестве электролита, никель-керметовые электроды для водяного пара или водорода, и смесь оксидов лантана, стронция и кобальта для кислородных электродов.
Экономический потенциал
Даже с использованием этой технологии электролиз является откровенно невыгодным способом хранения энергии. Серьезные потери энергии при преобразовании происходят как во время процесса электролиза, так и во время преобразования полученного водорода обратно в энергию.
При текущих ценах на углеводороды ВТЭ не может конкурировать с пиролизом углеводородов, как экономическим источником водорода.
Возможными источниками дешевой высокотемпературной тепловой энергии будут исключительно нехимические виды, в том числе – ядерные реакторы, коллекторы, собирающие солнечное тепло, и геотермальные источники. В лабораторных условиях высокотемпературный электролиз показал затраты в 108 кДж для производства одного грамма водорода. В коммерческих условиях он себя не проявлял. К 2030 году ожидается постройка первых коммерческих реакторов четвертого поколения.
Рынок производства водорода
При обеспечении дешевыми источниками тепла высокой температуры возможны и другие способы производства водорода. В частности, стоит обратить внимание на термохимический серно-йодный цикл. Термохимическое производство может быть эффективнее, чем ВТЭ из-за отсутствия потребности в тепловом двигателе. Однако промышленное термохимическое производство потребует новых передовых материалов, которые смогут выдерживать высокие температуру, давление и коррозию.
Рынок для водорода – велик (50 миллионов метрических тонн/год в 2004 году, стоимость – около 135 миллиардов долларов/год) и растет примерно на 10 % в год. Этот рынок связан с пиролизом углеводородов для получения водорода, что приводит к выбросам углекислого газа. Два главных потребителя – нефтеперерабатывающие заводы и производители удобрений (каждый из них получит примерно половину всего производства). Автомобили на водороде должны распространиться повсеместно, их потребление вырастет, что поможет увеличить потребность в водороде при приходе водородной энергетики.
Электролиз и термодинамика
Во время электролиза объем электроэнергии, который необходимо добавить, равен сумме изменения энергии Гиббса в реакции и потерь системы. Теоретически потери могут быть сколь угодно близки к нулю, поэтому максимальный термодинамический КПД любого электрохимического процесса равен 100%. На практике КПД равен полученной работе электричества, разделенному на изменение энергии Гиббса во время реакции.
В большинстве случаев, как и при обычном электролизе воды, потребляемая мощность больше, чем изменение теплосодержания в реакции, поэтому некоторое количество энергии высвобождается в виде сбросного тепла. В случае электролиза водяного пара на водород и кислород при высокой температуре верно обратное. Тепло поглощается из окружающей среды, и удельная теплота сгорания производимого водорода выше потребляемой мощности. В этом случае отношение КПД к потребляемой мощности, можно сказать, превышает 100%. Максимально возможный в теории КПД топливного элемента противоположен КПД при электролизе. Из этого следует невозможность создания вечного двигателя путем сочетания этих двух процессов.
Эксперимент «MARS ISRU»
Высокотемпературный электролиз с твердыми оксидными электролизными элементами также предлагался для производства кислорода на Марсе из атмосферного углекислого газа с использованием циркониевых электролизных устройств.
ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ
8.4.1. Прямое разложение воды
Общеизвестно, что водяной пар при высоких температурах разлагается на водород и кислород Эти газы могут быть сепарированы с помощью соответствующей методики, например, при использовании палладиевого филь-
тра. Данная методика обсуждалась выше в параграфе об очистке водорода монооксида углерода СО. Хотя на первый взгляд этот способ получения во рода может показаться привлекательным, однако его практическая реализа” достаточно сложна.
Представим себе такой эксперимент. В цилиндрическом сосуде под п шнем находится 1 кмоль чистого водяного пара. Вес поршня создает в cocj постоянное давление, равное 1 атм. Пар в сосуде нагревают до температ> 3000 К. Указанные значения давления и температуры были выбраны произвс. но в качестве примера.
Если в сосуде находятся только молекулы Н20, то количество свобол энергии системы можно определить с помошью соответствующих таблиц TeD динамических свойств воды и водяного пара Однако на самом деле по край мере часть молекул водяного пара подвергается разложению на составляг ее химические элементы, т. е. водород и кислород:
Если бы все молекулы водяного пара диссоциировали, то в сосуде оказалась газовая смесь, содержащая 1 кмоль водорода и 0,5 кмоля кислорода. Количе^ свободной энергии этой газовой смеси при тех же значениях давления (1 а и температуры (3000 К) оказывается больше количества свободной энер чистого водяного пара. Отметим, что 1 кмоль водяного пара был преобразован 1 кмоль водорода и 0,5 кмоля кислорода, т. е. общее количество вещества те: составляет А’оГ)||( =1,5 кмоля. Таким образом, парциальное давление водорода б> равно 1/1,5 атм, а парциальное давление кислорода — 0.5/1,5 атм.
При любом реалистичном значении температуры диссоциация водяного п будет неполной. Обозначим долю продиссоциировавших молекул перемен F. Тогда количество водяного пара (кмоль), который не подвергся разложен будет равно (1 – F) (считаем, что в сосуде находился 1 кмоль водяного пара). К личество образовавшегося водорода (кмоль) будет равно F, а кислорода — F Получившаяся смесь будет имеет состав
Общее количество газовой смеси (кмоль)
Парциальное давление каждого из компонентов газовой смеси, находящейся при давлении р, будет равно
Мы приняли, что полное давление смеси равно выбранному нами ранее зна чению р = 1 атм.