при наличии каких повреждений выявленных в результате осмотра молниеприемников

При наличии каких повреждений выявленных в результате осмотра молниеприемников

Осмотр и измерения произвели

(должность, фамилия, инициалы, подпись)

(должность, фамилия, инициалы, подпись)

9.4. Наружным осмотром молниезащитных устройств (с обязательным применением бинокля) должно определяться состояние молниеприемников, токоотводов, мест пайки и соединений, опорных мачт и надземных частей защиты от вторичных воздействий молнии.

9.5. При осмотре молниеприемников необходимо установить целостность конического наконечника, состояние его полуды, надежность и плотность соединения с токоотводом, наличие ржавчины, чистоту поверхностей в соединениях на болтах.

Молниеотвод с оплавившимся или поврежденным коническим наконечником и поврежденный ржавчиной более чем на 1/3 площади поперечного сечения должен быть заменен новым.

Поврежденные полуда, оцинковка должны быть восстановлены, ржавчина с контактных поверхностей удалена и слабые соединения закреплены.

9.6. При осмотре токоотводов определяются отсутствие перегибов и петель, целостность и плотность соединений, отсутствие ржавчины и повреждений.

Токоотводы, поврежденные ржавчиной, если их площадь сечения остается менее 50 мм2, должны быть заменены новыми.

9.7. Осмотром деревянных опорных мачт определяется степень поражения гнилостными грибками, если она достигает 1/3 площади сечения, мачты должны быть заменены новыми.

9.8. При осмотре наземных частей защиты от вторичных воздействий молнии, вызываемых электростатической индукцией, проверяются целостность сетки и токоотводов, плотность и надежность их соединений, степень повреждения ржавчиной.

При повреждении ржавчиной сетки и токоотводов до площади сечения более 16 мм2 поврежденные участки должны быть заменены.

9.9. При проверке устройств защиты от вторичных воздействий определяются целостность перемычек, их состояние и измеряется переходное сопротивление контактов, которое должно быть не более значения, указанного в пункте 883 настоящих Правил. При этом следует проверять связь всех заземляемых элементов с заземлителями защиты от вторичных воздействий.

9.10. Измерение сопротивления заземлителей молниезащиты должно проводиться специальными электроизмерительными приборами или методом трех измерений вольтметра-амперметра при высоком удельном сопротивлении грунтов. Сопротивление стыков надлежит измерять микроомметром. Измеренные сопротивления необходимо занести в ведомость состояния заземлителей молниезащиты на складе взрывчатых материалов по приведенной форме.

9.11. При измерении сопротивления заземлителей по трехэлектродной схеме следует применять схемы расположения токового Т и потенциального П электродов, приведенные на рисунке 16 приложения N 33. При D > 40 м размер должен быть не менее D.

отсюда сопротивление (Ом) каждого заземлителя

Для получения сопротивления (Ом) заземлителя N 4 проводятся еще два (четвертое и пятое) дополнительных измерения:

отсюда сопротивление заземлителя N 4

В таком же порядке могут быть измерены сопротивления и других заземлителей, если они имеются.

При одном или двух заземлителях необходимо сделать два или одно вспомогательное заземление.

9.14. Пример расчета молниезащиты склада взрывчатых материалов приведен ниже.

Необходимо осуществить молниезащиту хранилища взрывчатых материалов следующих размеров: длина 50 м, ширина на уровне крыши 16 м, высота до конька крыш тамбуров 4,7 м, расстояние от оси хранилищ до дверей тамбуров 11,1 м. Здание деревянное. Расчетное электрическое удельное сопротивление грунта 450 Ом*м. Требуемое импульсное сопротивление заземлителя молниеотвода Ru = 10 Ом.

Защиту от прямых ударов молнии наиболее рационально осуществить двойным стержневым молниеотводом, расположив его у торцевых сторон хранилища.

Наименьшее допустимое расстояние по воздуху Sв от стержневого молниеотвода до хранилища (приложение N 33, рисунок 3) при сопротивлении заземлителя Ru = 10 Ом составляет м. С учетом проезда автомашин расстояние от молниеотвода до хранилища принимается 5 м. Расстояние между молниеотводами составит L = 50 + 2 * 5 = 60 м.

Для обеспечения надежной защиты хранилища взрывчатых материалов от прямых ударов молнии необходимо, чтобы все части хранилища вписывались в зону защиты, образуемую двойным стержневым молниеотводом высотой h (приложение N 33, рисунок 18).

Из условия существования зоны защиты двойного стержневого молниеотвода (пункт 2.1.) определим необходимую высоту молниеотвода

По формулам (1) определим основные габариты торцевой зоны защиты как зоны одиночных стержневых молниеотводов.

Вершина конуса зоны защиты находится на высоте

h0 = 0,85, h = 0,85 * 20 = 17 м.

Зона защиты на уровне земли образует круг радиусом

Горизонтальное сечение зоны защиты в наиболее удаленной ry = 11,1 м от оси хранилища точки на высоте конька крыш тамбуров hx = 4,7 м представляет собой круг радиусом

rx = (1,1-0,002h) * (h- ) = (1,1-0,002*20) * (20- ) = 15,35 м

Зону защиты двойного стержневого молниеотвода определим по формулам (3).

Вершина конуса зоны защиты двойного стержневого молниеотвода находится на высоте

На уровне земли rc = r0 = 21,2 м.

Радиус rcx зоны защиты двойного стержневого молниеотвода на высоте hx = 4,7 м в наиболее удаленной точке от оси хранилища составит:

что превышает расстояние ry = 11,1 м.

Произведя аналогичные графические построения, легко убедиться, что все части хранилища вписываются в зону защиты двойного стержневого молниеотвода высотой h = 20 м.

Заземлители устраиваются у основания каждого молниеотвода. В нашем примере импульсное сопротивление для грунтов с электрическим удельным сопротивлением 450 Ом*м составляет Ru = 10 Ом. Оно определяется также расстоянием в земле от заземлителя до предметов, имеющих связь с хранилищем. Таким предметом, связанным с хранилищем, является заземлитель вторичных воздействий, выполненный из полосовой стали, укладываемый в землю вокруг хранилища на расстоянии 0,8 м от его стен. Следовательно, импульсное сопротивление заземлителя молниеотводов должно быть не более (см. пункт 880 настоящих Правил).

В качестве заземлителя молниеотводов принимаем горизонтальный трехлучевой с длиной луча l = 20 м, выполненный из полосовой стали 40 x 4 мм и находящийся на глубине 0,8 м от поверхности земли.

Сопротивление растеканию тока промышленной частоты такого заземлителя, согласно таблице, приведенной ниже в данном приложении, после интерполяции составит Ru = 15,3 Ом.

При принятых электрическом сопротивлении грунта и конструкции заземлителя замеренному приборами сопротивлению растекания 15,3 Ом будет соответствовать импульсное сопротивление заземлителя.

Ввиду наличия в хранилище металлических предметов, а также кабельной подводки освещения необходимо предусмотреть защиту от вторичных воздействий.

Защита от вторичных воздействий осуществляется наложением на здание хранилища сетки из стальной проволоки. Проволока прокладывается по коньку и краям крыши и присоединяется к заземлителю защиты от вторичных воздействий посредством 14 вертикальных спусков. К этому же заземлителю присоединяются оболочки и броня кабеля освещения.

Источник

Глава 1. Порядок установления наличия и характера повреждений транспортного средства, в отношении которых определяются расходы на восстановительный ремонт

Глава 1. Порядок установления наличия и характера повреждений транспортного средства, в отношении которых определяются расходы на восстановительный ремонт

1.1. Первичное установление наличия и характера повреждений, в отношении которых определяются расходы на восстановительный ремонт, производится во время осмотра транспортного средства.

Результаты осмотра транспортного средства фиксируются актом осмотра. Акт осмотра должен включать в себя следующие сведения:

основание для проведения осмотра;

дата осмотра (в том числе время начала и окончания проведения осмотра);

место и условия проведения осмотра;

данные регистрационных документов транспортного средства;

сведения о владельце транспортного средства (фамилия, имя, отчество (при наличии) физического лица или полное наименование юридического лица);

сведения о соответствии (несоответствии) идентификационных характеристик и параметров транспортного средства информации, содержащейся в регистрационных документах;

дата повреждения транспортного средства;

информация о пробеге транспортного средства с указанием источника данной информации;

дата начала эксплуатации транспортного средства;

сведения о комплектации транспортного средства;

информация о повреждениях транспортного средства (характеристиках поврежденных элементов с указанием расположения, вида и объема повреждения), а также предварительное определение способа устранения повреждений и трудозатрат на выполнение не нормированных изготовителем транспортного средства ремонтных воздействий;

информация о дефектах эксплуатации транспортного средства, повреждениях доаварийного характера, следах ранее проведенного ремонта, а также других факторов, влияющих на результаты экспертизы;

предварительное установление принадлежности повреждений транспортного средства к рассматриваемому дорожно-транспортному происшествию;

данные по определению технического состояния транспортного средства либо его остатков;

информация о возможных скрытых повреждениях (с указанием примерного места расположения и характера повреждений);

информация о пробах и элементах транспортного средства, взятых для исследования (с описанием причины, вида и цели исследования);

фамилия, имя, отчество (при наличии), подпись лица, осуществившего осмотр транспортного средства;

фамилии, имена, отчества (при наличии), замечания и подписи лиц, присутствовавших на осмотре;

дата составления акта осмотра.

Дополнительными источниками информации к акту осмотра являются фотоматериалы (видеосъемка).

Фотографирование поврежденного транспортного средства осуществляется в соответствии с требованиями, установленными в приложении 1 к настоящей Методике.

1.2. При первичном осмотре повреждения транспортного средства фиксируются по результатам внешнего осмотра органолептическим методом, без проведения демонтажных работ.

В случае необходимости при первичном осмотре применяются инструментальные методы с использованием технических средств измерения и контроля или диагностического оборудования в соответствии с технической документацией и инструкциями по эксплуатации и применению указанных технических средств и оборудования, а также проведение демонтажных работ.

1.4. Для характеристики повреждений деталей каркаса кузова и оперения транспортного средства, используются следующие показатели, в зависимости от которых определяются методы и трудоемкость устранения повреждений:

площадь повреждения либо отношение площади повреждения к общей площади части, детали (в процентном соотношении или частях) и глубина (объем) повреждения (количественные показатели);

вид деформации и первоначальные (установленные заводом-производителем) конструктивные характеристики части, детали транспортного средства в зоне повреждения (качественные показатели);

локализация (место расположения) повреждений для определения доступности ремонтного воздействия.

1.5. Для характеристики повреждений лакокрасочного покрытия транспортного средства используются следующие показатели, в зависимости от которых определяются методы, технология и трудоемкость устранения повреждений:

вид лакокрасочного покрытия;

размерные характеристики повреждения (в единицах измерения или по отношению к размерам части, детали);

глубина послойных повреждений лакокрасочного покрытия (повреждение лака, наружный слой, до грунта, до материала);

материал окрашенной части, узла, агрегата или детали транспортного средства.

Определение цвета, типа лакокрасочного покрытия транспортного средства производится с учетом:

размещения рекламы на наружных поверхностях транспортного средства;

цветографических схем, опознавательных знаков и надписей на наружных поверхностях транспортного средства;

наличия изображений, в том числе пленок, автомобильной аэрографии и тому подобного (указываются способ нанесения, примерное содержание изображения, размеры и место его расположения).

1.6. В ходе осмотра транспортного средства проводятся описание повреждений и предварительное определение способа их устранения, исходя из следующих положений.

При наименовании в акте осмотра частей, узлов, агрегатов и деталей используется следующий порядок: вид, подвид, расположение относительно стороны транспортного средства. При наличии возможности нумерации (кодирования) частей, узлов, агрегатов и деталей производится такая нумерация (такое кодирование) с указанием источника информации (печатного издания или расчетно-программного комплекса).

По каждому повреждению фиксируются следующие данные: вид повреждения в соответствии с типовыми определениями и характеристиками повреждений транспортного средства, приведенными в приложении 2 к настоящей Методике, место расположения, характер и объем. Объем повреждения определяется линейными размерами (глубиной, шириной, длиной) либо отношением площади поврежденной части к общей площади детали (в процентном соотношении или частях).

Для каждой поврежденной детали (узла, агрегата) транспортного средства определяется вид и объем предполагаемого ремонтного воздействия и (или) категория окраски.

Необходимый и достаточный набор (комплекс) работ по восстановительному ремонту транспортного средства устанавливается в зависимости от характера и степени повреждения отдельных частей, узлов, агрегатов и деталей на основе технологии предприятия-изготовителя или сертифицированных ремонтных технологий с учетом особенностей конструкции деталей (узлов, агрегатов), подвергающихся ремонтным воздействиям, выполнения в необходимом и достаточном объеме вспомогательных и сопутствующих работ по разборке/сборке, регулировке, подгонке, окраске, антикоррозийной обработке и так далее для обеспечения доступа к заменяемым и ремонтируемым частям, узлам, агрегатам и деталям, сохранности сопряженных частей, узлов, агрегатов и деталей и соблюдения требований безопасности работ.

Замена кузова легкового автомобиля, автобуса, кабины грузового автомобиля назначается в случае, если их ремонт, восстановление технически невозможны либо экономически нецелесообразны.

Необходимость и объем работ по устранению перекосов определяются по результатам замеров; предельное время по их устранению для транспортных средств иностранных производителей определяется с учетом укрупненных показателей трудозатрат на выполнение работ по кузовному ремонту и устранению перекосов проемов и кузова легковых автомобилей иностранных производителей, приведенных в приложении 3 к настоящей Методике.

При отсутствии визуально фиксируемых повреждений деталей (узлов) подвески решение о замене элемента принимается по результатам инструментального контроля либо дополнительного осмотра после выполнения полного восстановления геометрических параметров кузова (рамы) транспортного средства, по результатам измерений углов установки колес (УУК) с их последующей регулировкой, при условии выхода параметров УУК за предельно допустимые значения.

При необходимости замены поврежденных стекол, приборов освещения (электрооборудования) либо частей, узлов, агрегатов и деталей с ресурсом меньшим, чем ресурс транспортного средства (например, аккумуляторная батарея, шины, ремни), или наличии повреждений и дефектов, не характерных для транспортных средств с аналогичными параметрами, следует отдельно зафиксировать их марку (производителя), год выпуска, состояние, или, если это невозможно, указать экспертное значение износа.

Решение о замене деталей, изготовленных из пластиковых материалов, принимается только в случае, если изготовитель транспортного средства запрещает их ремонт либо если их ремонт и окраска, включая текстурированные поверхности, технически невозможны или экономически нецелесообразны; решение о замене приборов освещения транспортного средства в случае разрушения их креплений без нарушения работоспособности принимается в случае невозможности ремонта их креплений (отсутствия ремонтных комплектов для ремонта креплений).

Окрасочные работы назначаются в минимально допустимом технологией производителя объеме, позволяющем восстановить доаварийные свойства транспортного средства. При значительном объеме окрашиваемых деталей эксперт-техник проверяет экономическую целесообразность проведения наружной окраски кузова в совокупности с окраской внутренних поверхностей деталей, подлежащих ремонтным воздействиям в случае, если таковая предусмотрена технологией производителя транспортного средства.

Если на момент дорожно-транспортного происшествия на детали имелась сквозная коррозия, либо уже требовалась окраска более 25 процентов ее наружной поверхности, либо цвет окраски поврежденной детали не соответствует основному цвету кузова транспортного средства (за исключением случаев специального цветографического оформления), окраска такой детали не назначается.

1.7. В случае когда в ходе осмотра сделано заключение о конструктивной гибели транспортного средства по техническим показателям или предположение об экономической нецелесообразности проведения восстановительного ремонта, необходимо отразить в акте осмотра (или приложении к нему) полный перечень и состояние неповрежденных деталей (узлов, агрегатов) в целях определения их стоимости в качестве годных остатков и зафиксировать эти показатели для определения стоимости транспортного средства до дорожно-транспортного происшествия.

Источник

Проверка молниезащиты

Система молниезащиты здания нуждается в периодической проверке. Необходимость таких мероприятий обусловлена, во-первых, важностью данных устройств для безопасности как самих объектов недвижимости, так и находящихся поблизости людей, а во-вторых, нахождением громоотводов под постоянным воздействием неблагоприятных факторов окружающей среды. Первая проверка системы молниезащиты осуществляется непосредственно после монтажа. В дальнейшем она проводится через определенные, установленные нормативами, промежутки времени.

Периодичность проверок

Периодичность проверки молниезащиты определяется в соответствии с п. 1.14 РД 34.21.122-87 «Инструкции по устройству молниезащиты зданий и сооружений». Согласно документу для всех категорий зданий она проводится не реже 1 раза в год.

В соответствии с «Правилами технической эксплуатации электроустановок потребителей» проверка заземляющих контуров проводится:

1 раз в полгода – визуальный осмотр видимых элементов заземляющего устройства;

1 раз в 12 лет – осмотр, сопровождающийся выборочным вскрытием грунта.

Измерение сопротивления заземляющих контуров:

1 раз в 6 лет – на ЛЭП с напряжением до 1000 В;

1 раз в 12 лет – на ЛЭП с напряжением свыше 1000 В.

Система мероприятий проверки молниезащиты

Проверка молниезащиты включает в себя следующие мероприятия:

Проверка сопротивления системы грозозащиты проводится с помощью прибора MRU-101. При этом методика проверки молниезащиты может быть разной. К наиболее распространенным относятся:

Четырехполюсная система проверки является более точной и сводит до минимума возможность ошибки.

Проверку заземления лучше всего проводить в условиях максимального сопротивления грунта – при сухой погоде или в условиях наибольшего промерзания. В остальных случаях для получения точных данных используются поправочные коэффициенты.

По итогам осмотра системы оформляется протокол проверки молниезащиты, который свидетельствует об исправности оборудования.

На что обратить внимание при проверке молниезащиты

Испытать в действии систему молниезащиты в момент принятия работ вряд ли удастся, так как вероятность того, что в этот момент разразится гроза, очень мала. Поэтому следует обратить внимание на ход проверки:

Для того чтобы исключить недобросовестные проверки, которые могут повлечь за собой и проблемы с вводом объекта в эксплуатацию, и недостаточную защиту от грозовых разрядов, лучше всего обращаться в надежную, проверенную компанию, специализирующуюся на установке систем молниезащиты.

Стоимость проверки системы молниезащиты в компании МЗК-Электро

Тип зданияСтоимость, руб.
Частные домаОт 5 000,00
Административные зданияОт 10 000,00
Промышленные зданияОт 15 000,00

Обычно проверка системы молниезащиты включает:

Результаты проверок оформляются актами, заносятся в паспорта и журнал учета состояния устройств молниезащиты. На основании полученных данных составляется план ремонта и устранения дефектов устройств молниезащиты, обнаруженных во время осмотров и проверок.

Источник

Проверка и испытание систем молниезащиты

при наличии каких повреждений выявленных в результате осмотра молниеприемников. Смотреть фото при наличии каких повреждений выявленных в результате осмотра молниеприемников. Смотреть картинку при наличии каких повреждений выявленных в результате осмотра молниеприемников. Картинка про при наличии каких повреждений выявленных в результате осмотра молниеприемников. Фото при наличии каких повреждений выявленных в результате осмотра молниеприемников при наличии каких повреждений выявленных в результате осмотра молниеприемников. Смотреть фото при наличии каких повреждений выявленных в результате осмотра молниеприемников. Смотреть картинку при наличии каких повреждений выявленных в результате осмотра молниеприемников. Картинка про при наличии каких повреждений выявленных в результате осмотра молниеприемников. Фото при наличии каких повреждений выявленных в результате осмотра молниеприемников

Проведение электроизмерений при проверке молниезащиты: что это, зачем нужно и как выполняется

Проверка состояния молниеприёмника, связи молниеприёмника с токоотводом и токоотвода с контуром заземления молниезащиты.

при наличии каких повреждений выявленных в результате осмотра молниеприемников. Смотреть фото при наличии каких повреждений выявленных в результате осмотра молниеприемников. Смотреть картинку при наличии каких повреждений выявленных в результате осмотра молниеприемников. Картинка про при наличии каких повреждений выявленных в результате осмотра молниеприемников. Фото при наличии каких повреждений выявленных в результате осмотра молниеприемников

Все работы выполняются в сжатые сроки. Желательно проводить проверку молниезащиты с составлением «акта проверки молниезащиты» ежегодно, перед началом грозового периода.

Сервис от компании ТМ-Электро:

Проверка молниезащиты состоит из:

1.Общие положения

Испытания систем молниезащиты зданий и сооружений проводятся с целью проверки их соответствия проектным решениям и требованиям ПУЭ (гл. 4.2), ПТЭЭП (гл. 2.8), инструкции по устройству молниезащиты зданий и сооружений (РД 34.21.122-87).

2. Технические мероприятия

Перечень необходимых технических мероприятий определяет допускающий совместно с производителем работ в соответствии с требованиями СНиП 12-03-99.

При осмотре и проверке состояния молниеприемников и токоотводов на крышах зданий и сооружений необходимо использовать пояса монтерские предохранительные. При недостаточной длине стропа пояса необходимо пользоваться страховочным канатом, предварительно закрепленным за конструкцию здания. При этом одно из лиц, проводящих испытания медленно опускает или натягивает страховочный канат. При проверке сварных соединений наружных токопроводов, конструкции молниеприемников инструмент (молоток) необходимо привязывать во избежание падения. При приближении грозы все работы должны быть прекращены, бригада удалена с рабочего места.

3. Нормируемые величины

при наличии каких повреждений выявленных в результате осмотра молниеприемников. Смотреть фото при наличии каких повреждений выявленных в результате осмотра молниеприемников. Смотреть картинку при наличии каких повреждений выявленных в результате осмотра молниеприемников. Картинка про при наличии каких повреждений выявленных в результате осмотра молниеприемников. Фото при наличии каких повреждений выявленных в результате осмотра молниеприемников

Защита от прямых ударов молний зданий и сооружений, относимых по устройству молниезащиты к I категории должна выполняться отдельно стоящими стержневыми или тросовыми молниеотводам

Защита от прямых ударов молний зданий и сооружений, относимых по устройству молниезащиты ко II и III категориям, с неметаллической кровлей должна быть выполннена отдельно стоящими или установленными на защищаемом объекте стержневыми или тросовыми молниеотводами.

При уклоне кровли не более 1:8 в качестве молниеотвода можно использовать молниеприемную сетку, выполненную из стальной проволоки диаметром не менее 6 мм с шагом ячеек для II категории защиты не более 6х6 м и 12х12 м для II Iпроложены к заземлителям не реже, чем через 25 м по периметру здания, располагать их следует не ближе 3 м от входов в здания и в местах недоступных прикосновению людей и животных. категории защиты. Токоотводы от металлической кровли или молниеприемной сетки должны быть

Во всех вышеизложенных случаях дополнительно в качестве естественных заземлителей систем молниезащиты следует использовать железобетонные фундаменты зданий.

Размеры молниеприемников, токоотводов и элементов заземлителей приведены в таблице

Форма молниеприемников, токоотводовСнаружиВ земле
Стержневые молниеприемники (сталь)100 мм2
— сечение не менее200 мм
— длина не менее
Тросовые молниеприемники (стальной многопроволочный канат)35 мм2
— сечение не менеев зависимости от зоны защиты
— длина
Круглые токоотводы и перемычки (сталь)6 мм
— диаметр не менее
Круглые вертикальные электроды (сталь)10 мм
— диаметр не менее
Круглые горизонтальные электроды (сталь)10 мм
* — диаметр не менее
Прямоугольныетокоотводы и заземлители (сталь)48 мм2160 мм2
— сечение не менее4 мм4 мм
— толщина не менее

*Только для уравнивания потенциалов внутри зданий и для прокладки наружных контуров на дне котлована по периметру здания

Соединения молниеприемников с токоотводами и токоотводов с заземлителями должны выполняться сваркой, а при недопустимости огневых работ — болтовыми соединениями с переходным сопротивлением не более 0,05 Ом. Сварные швы не должны иметь трещин, прожогов, непроваров величиной более 10% длины шва, незаправленных кратеров и подрезов. Поверхность шва должна быть равномерно-чешуйчатой, без наплывов. Длина сварного шва должна быть: для конструкции круглых сечений не менее 6d (d—диаметр молниеприемника, токоотвода, заземли-теля), прямоугольных — 2В, где В — ширина полосовой стали конструкций систем молниезащиты (п. 3.2 ВСН 164-82, ГОСТ 10434-82, СНиП Ш-33-76 раздел II).

Испытания систем молниезащиты производятся:

При этом контроль переходного сопротивления болтовых соединений систем молниезащиты должен проводится ежегодно с началом грозового сезона.

Устройства молниезащиты зданий и сооружений должны быть испытаны, приняты и введены в эксплуатацию до начала отделочных работ.

4. Проведение испытаний.

Проведение испытаний систем молниезащиты включает следующие этапы:

Работоспособность системы молниезащиты – важнейший фактор, определяющий безопасность использования бытовых электроприборов и оборудования. Ее проверка предполагает осуществление визуального осмотра, постукивания сварных соединений и подтягивания болтов при помощи динамометрической отвертки. Еще один важный этап, которым не следует пренебрегать в ходе проверочных мероприятий – проведение измерений.

Законодательная база

Целью проведения таких испытаний являются:

Однако на практике, в реальных условиях стремительно развивающихся технологий, массово положения CO153-34.21.122 – 2003 так и не реализуются. Нормы и рекомендации этих положений не имеют обязательный характер. А потому испытания с применением имитаторов молний на эксплуатируемых объектах не проводятся.

Как исключение, испытательные работы проводятся с новыми моделями систем молниезащиты, для этого используются специализированные полигоны. Как правило, измеряются:

Как измеряется сопротивление заземления?

Таким образом, импульсный метод измерений сопротивления заземления можно применять для тока меньшей величины, чем при ударах молний, происходящих в реальных условиях. Обычно для этого используются импульсы, ток которых не превышает 1А. В то же время важно, чтобы используемые для измерения устройства давали импульс, длительность фронта которого соответствовала параметрам в реальных условиях. Все эти значения указываются в той же Инструкции CO153-34.21.122 – 2003.

при наличии каких повреждений выявленных в результате осмотра молниеприемников. Смотреть фото при наличии каких повреждений выявленных в результате осмотра молниеприемников. Смотреть картинку при наличии каких повреждений выявленных в результате осмотра молниеприемников. Картинка про при наличии каких повреждений выявленных в результате осмотра молниеприемников. Фото при наличии каких повреждений выявленных в результате осмотра молниеприемников

Измерение сопротивления при помощи четырехпроводного метода – схема испытаний

Импульсный метод проведения испытаний на токе сравнительно малой величины позволяет спроектировать прибор для измерений с довольно компактными размерами, удобный для выезда специалистов на заданные объекты. Для проведения измерительных работ с применением импульсного тока используется четырехпроводная схема. Ее преимуществом признано отсутствие какого-либо влияния базовых характеристик электропроводов, которые служат соединением между приборов и щупами для измерения, на итоговые результаты исследования.

В более усовершенствованных и модернизированных версиях измерительного оборудования предусмотрен встроенный GPS-модуль. Эти модели приборов рассчитаны на выполнении автоматической записи во встроенную память полученные в результате работ значения, а также точные координаты объектов, где проводились проверки.

Применяемые нормативы при измерении сопротивления заземления

Как правило, все полученные результаты исследований сравниваются с предельными значениями. Это служит основанием для оценки степени работоспособности системы заземления молниезащиты. Однако, остается неразрешенным вопрос, где указаны максимально допустимые значения уровня сопротивления для определенного строения или здания?

Если пролистать профильную литературу за последние четыре десятилетия, можно отметить следующее: при создании руководствующего документа PД 34.21.122 – 87 «Инструкция по обустройству молниезащиты зданий» была признана устаревшей методика нормированного расчета уровня сопротивления заземления систем молниезащиты. На смену пришли однотипные схемы модулей заземления – уже для них выполнялось нормирование геометрических размеров составных элементов.

CO153-34.21.122 – 2003 не содержит каких-либо конкретных нормативов относительно значений сопротивления заземления. Преимуществом типовых конструкций заземления признано удобство в проектировании. Однако до сих пор неясно, каким образом проверяется работоспособность уже установленных и эксплуатируемых в зданиях систем заземления.

В то же время специалистами отмечается, что провести исследование все же возможно. Так, в любом современном здании устанавливается и эксплуатируется электрическое оборудование. Согласно требованиям, прописанным в ПУЭ, системы заземления как электроустановок, так и заземления молниезащиты, должны объединяться в один контур. Итоговые значения измерений сопротивления единого контура, по рекомендациям известного специалиста и доктора технических наук, профессора Э.М. Базелян, следует сравнивать с нормативами ПУЭ, относящимися к сопротивлению заземления для электрического оборудования.

Помимо этого, невозможно разделение обоих типов заземлителей для выполнения измерительных мероприятий. Данные значения указываются в ПУЭ – 7, гл. 1.7. При этом на формирование максимально допустимых значений сопротивления полностью определяется установленной системой электроснабжения и подаваемым напряжением для питания электрических установок в здании. Чтобы получить более точные результаты, можно выполнить работу по измерению сопротивления для определенного контура заземления с применением не только импульсного метода, но и переменного тока. Такая функция предусмотрена во всех современных устройствах для проведения измерений.

Измерение сопротивления болтовых соединений: приборы, максимальные значения

При измерении переходных сопротивлений в болтовых соединениях используются специализированные приборы – миллиомметры. Для проведения измерительных работ нужны зажимы типа «крокодил». Ими с обоих сторон обхватывается болтовое соединение. В результате между соединяемыми болтами создается шина, сопротивление которой бесконечно мало, если его сравнивать с сопротивлением в том месте, где они соприкасаются.

Следует отметить, что в PД 34.21.122 – 87 максимальное переходное сопротивление указывается значением 0.05 Oм.

Мероприятия по измерению и проверке работоспособности молниезащиты лишь кажутся простыми. При реальном их выполнении даже специалисты сталкиваются с рядом трудноразрешимых вопросов, разобраться самостоятельно с которыми довольно трудно. Ярким тому примером служит нормирование максимальных значений сопротивления систем заземления.

Однако скрепить уверенность в работоспособности и надежности системы молниезащиты позволит не только своевременное проведение измерительных испытаний, но грамотное интерпретирование (расшифровка) результатов профильными специалистами, знающие все азы нормативной базы и понимающие принципы функционирования данной системы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *