работа каких устройств основана на явлении электромагнитной индукции
Работа каких устройств основана на явлении электромагнитной индукции
В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой электрическими и магнитными полями.
В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.
Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая электронной частью в электрический аналоговый/цифровой сигнал.
Генератор постоянного тока
В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу «правой руки». При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам генератора подключить нагрузку, то в ней пойдет ток.
Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.
Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.
Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение.
Контрольная работа по теме «Электромагнитное поле»
Контрольная работа по теме «Электромагнитное поле»
Что является источником магнитного поля?
А. Неподвижный электрический заряд; Б. Движущийся электрический заряд;
В. Постоянный магнит; Г. Неподвижная заряженная сфера.
№2
Как будет взаимодействовать магнит с проволочным витком с током?
А. Отталкиваться; Б. Может притягиваться и отталкиваться; S
В. Не будут взаимодействовать; Г. Притягиваться.
№3
Каково направление тока в проводнике? Fа
А. На нас • Б. Вправо S N
В. т нас
В однородное магнитное поле перпендикулярно линиям магнитной индукции поместили прямолинейный проводник, по которому протекает ток силой 4 А. Определите индукцию этого поля, если оно действует с силой 0,2 Н на каждые 10 см длины проводника.
А. 2 Тл; Б. 1 Тл; В. 0,5 Тл; Г. 0,25 Тл.
Работа каких устройств основана на явлении электромагнитной индукции?
А. Электрическая лампочка; Б. Генератор переменного тока;
В. Трансформатор; Г. Источник постоянного тока.
Что является источником электромагнитного поля?
А. Неподвижный электрический заряд; Б. Равномерно движущийся электрический заряд;
В. Постоянный магнит; Г. Ускоренно движущийся электрический заряд.
В1. Установите соответствие между физическими величинами и единицами их измерения
Электромагнитные устройства: назначение, виды, требования, конструкции
Назначение электромагнитных устройств
Производство, преобразование, передача, распределение или потребление электрической энергии осуществляются при помощи электротехнических устройств. Из всего их многообразия выделим электромагнитные устройства, работа которых основана на явлении электромагнитной индукции, сопровождающемся возникновением магнитных потоков.
Совокупность ферромагнитных деталей электромагнитных устройств, предназначенных для проведения основной части магнитного потока, называется магнитной системой электромагнитного устройства. Особой конструктивной единицей такой системы является магнитопровод. Магнитные потоки, проходящие через магнитопроводы, могут частично замыкаться по немагнитной среде, образуя магнитные потоки рассеяния.
Магнитные потоки, проходящие через магнитопровод, могут создаваться при помощи постоянных или переменных электрических токов, протекающих в одной или более индуктивных катушках. Такая катушка представляет собой элемент электрической цепи, предназначенный для использования его собственной индуктивности и/или его магнитного поля.
Одна или несколько катушек образуют обмотку. Часть магнитопровода, на которой или вокруг которой расположена обмотка, называется сердечником, часть, на которой или вокруг которой обмотка не расположена, называется ярмом.
Расчет основных электрических параметров электромагнитных устройств базируется на законе полного тока и законе электромагнитной индукции. Явление взаимоиндукции используется для передачи энергии из одной электрической цепи в другую.
Требования к магнитопроводам электромагнитных устройств
Требования к магнитопроводам зависят от функционального назначения электромагнитных устройств, в которых они используются.
В электромагнитных устройствах могут одновременно использоваться постоянные и/или переменные магнитные потоки. Постоянный магнитный поток не вызывает потерь энергии в магнитопроводах.
Магнитопроводы, работающие в условиях воздействия постоянного магнитного потока (например, станины машин постоянного тока), можно изготавливать из литых заготовок с последующей механической обработкой. При сложной конфигурации магнитопроводов экономичнее изготавливать их из нескольких элементов.
Прохождение через магнитопроводы переменного магнитного потока сопровождается потерями энергии, которые называют магнитными потерями. Они вызывают разогрев магнитопроводов. Снизить разогрев магнитопроводов можно специальными мерами для их охлаждения (например, работа в масле). Такие решения усложняют их конструкцию, увеличивают затраты на их производство и эксплуатацию.
Магнитные потери состоят из:
потерь на гистерезис ;
потерь на вихревые токи ;
Потери на гистерезис могут быть уменьшены за счет использования магнитомягких ферромагнетиков, имеющих узкую петлю гистерезиса.
Потери на вихревые токи обычно снижают:
использованием материалов с меньшей удельной электрической проводимостью;
изготовлением магнитопроводов из электрически изолированных лент или пластин.
Распределение вихревых токов в различных магнитопроводах: а – в литом; б – в набранном из деталей, изготовленных из листового материала.
Средняя часть магнитопровода в большей степени охватывается вихревыми токами по отношению к его поверхности, что приводит к «вытеснению» основного магнитного потока к поверхности магнитопровода, т. е. возникает поверхностный эффект.
Это приводит к тому, что при некоторой частоте, характерной для материала данного магнитопровода, магнитный поток будет полностью сосредоточен в тонком приповерхностном слое магнитопровода, толщина которого определяется глубиной проникновения на данной частоте.
Наличие вихревых токов, протекающих в магнитопроводе из материала с малым электрическим сопротивлением, приводит к соответствующим потерям (потерям на вихревые токи).
Задача уменьшения потерь на вихревые токи и максимального сохранения магнитного потока решается изготовлением магнитопроводов из отдельных деталей (или их частей), которые электрически изолированы друг от друга. При этом площадь поперечного сечения магнитопровода остается неизменной.
Широко применяются штампованные из листового материала пластины или ленты, навитые на сердечник. Для изоляции поверхностей пластин (или лент) можно применять различные технологические приемы, из которых чаще всего используют нанесение изолирующих лаков или эмалей.
Магнитопровод из отдельных деталей (или их частей) позволяет:
уменьшить потери на вихревые токи за счет перпендикулярного расположения пластин по отношению к направлению их циркуляции (в этом случае уменьшается длина контуров, по которым возможна циркуляция вихревых токов);
получить незначительную неравномерность распределения магнитного потока, так как при малой толщине листового материала, соизмеримой с глубиной проникновения, экранирующее действие вихревых токов невелико.
К материалам магнитопроводов могут предъявляться и другие требования: стойкость к воздействию температуры и вибрации, низкая себестоимость и т. п. При проектировании конкретного устройства выбирается тот магнитомягкий материал, параметры которого лучше всего удовлетворяют заданным требованиям.
В зависимости от технологии изготовления магнитопроводы электромагнитных устройств можно разделить на 3 основные группы:
Пластинчатые магнитопроводы набирают из отдельных, электрически изолированных друг от друга пластин, что позволяет уменьшить потери на вихревые токи. Ленточные магнитопроводы получают навивкой ленты определенной толщины. В таких магнитопроводах влияние вихревых токов значительно снижается, так как плоскости ленты покрывают изолирующим лаком.
Формованные магнитопроводы изготавливают литьем (электротехнические стали), методами керамической технологии (ферриты), смешением компонентов с последующим прессованием (магнитодиэлектрики) и другими методами.
При изготовлении магнитопровода электромагнитного устройства необходимо обеспечить его заданную конструкцию, которая определяется многими факторами (мощностью устройства, рабочей частотой и т. д.), и в том числе – наличием или отсутствием в устройстве прямого или обратного преобразования электромагнитной энергии в механическую.
Конструкции устройств, в которых такое преобразование происходит (электродвигатели, электрогенераторы, реле и т. п.), включают в себя детали, перемещающиеся под влиянием электромагнитного взаимодействия.
Устройства, в которых электромагнитная индукция не вызывает преобразования электромагнитной энергии в механическую (трансформаторы, дроссели, магнитные усилители и т. п.), называются статическими электромагнитными устройствами.
В статических электромагнитных устройствах в зависимости от конструкции наиболее часто используются броневые, стержневые и кольцевые магнитопроводы.
Формованные магнитопроводы могут иметь более сложную конструкцию по сравнению с листовыми и ленточными.
Формованные магнитопроводы: а – кольцевой; б–г – броневой; д – чашечный; е, ж – стержневой; з – многоотверстный
Броневые магнитопроводы отличаются простотой конструкции и, как следствие, технологичностью. Кроме того, такая конструкция обеспечивает лучшую (по сравнению с другими) защиту катушек от механических воздействий и электромагнитных помех.
Стержневые магнитопроводы отличаются:
малой чувствительностью к помехам (так как ЭДС помех, наводимых в соседних катушках, противоположны по знаку и частично или полностью компенсируются);
меньшей (по отношению к броневым) массой при одинаковой мощности;
меньшим (по отношению к броневым) рассеянием магнитного потока.
К недостаткам устройств на основе стержневых магнитопроводов (по отношению к устройствам на основе броневых) относятся трудоемкость изготовления обмоток (особенно при размещении на разных стержнях) и их меньшая защищенность от механических воздействий.
Кольцевые магнитопроводы за счет малых потоков рассеяния отличаются, с одной стороны, хорошей помехозащищенностью, а с другой – малым влиянием на рядом расположенные элементы радиоэлектронной аппаратуры (РЭА). По этой причине они широко применяются в радиотехнических изделиях.
Недостатки кольцевых магнитопроводов связаны с их нетехнологичностью (трудности при навивке обмоток и установке электромагнитных устройств в месте использования) и ограниченностью по мощности – до сотен ватт (последнее объясняется нагревом магнитопровода, который не имеет прямого охлаждения из-за расположенных на нем витков катушки).
Выбор типа и вида магнитопровода осуществляется с учетом возможности получения наименьших значений его массы, объема и стоимости.
Достаточно сложные конструкции имеют магнитопроводы устройств, в которых происходит прямое или обратное преобразование электромагнитной энергии в механическую (например, магнитопроводы вращающихся электрических машин). В таких устройствах используются формованные или пластинчатые магнитопроводы.
Виды электромагнитных устройств
Дроссель – устройство, используемое в качестве индуктивного сопротивления в цепях переменного или пульсирующего тока.
Магнитопроводы с немагнитным зазором используются в дросселях переменного тока, которые служат для накопления энергии, и в сглаживающих дросселях, предназначенных для сглаживания пульсаций выпрямленного тока. При этом существуют дроссели, в которых размер немагнитного зазора можно регулировать, что необходимо для изменения индуктивности дросселя в процессе его работы.
Магнитный усилитель – устройство, состоящее из одного или нескольких магнитопроводов с обмотками, с помощью которого в электрической цепи, питаемой от источника переменного напряжения или переменного тока, может изменяться ток или напряжение по величине, основанное на использовании явления насыщения ферромагнетика при действии постоянного подмагничивающего поля.
Принцип работы магнитного усилителя основан на изменении дифференциальной магнитной проницаемости (измеряемой на переменном токе) при изменении постоянного тока подмагничивания, поэтому простейшим магнитным усилителем является дроссель насыщения, содержащий рабочую обмотку и обмотку управления.
Трансформатором называется статическое электромагнитное устройство, имеющее две (или более) индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.
Мощность трансформатора определяется максимально возможной индукцией материала магнитопровода и его размерами. Поэтому магнитопроводы (обычно стержневого типа) силовых трансформаторов большой мощности собираются из листов электротехнической стали толщиной 0,35 или 0,5 мм.
Электромагнитным реле называется электромеханическое реле, работа которого основана на воздействии магнитного поля неподвижной обмотки на подвижный ферромагнитный элемент.
Любое электромагнитное реле содержит две электрические цепи: цепь входного (управляющего) сигнала и цепь выходного (управляемого) сигнала. По принципу устройства управляемой цепи различают неполяризованные и поляризованные реле. Работа неполяризованных реле, в отличие от поляризованных реле, не зависит от направления тока в управляющей цепи.
Вращающаяся электрическая машина – устройство, предназначенное для преобразования энергии на основе электромагнитной индукции и взаимодействия магнитного поля с электрическим током, содержащее, по крайней мере, две части, участвующие в основном процессе преобразования и имеющие возможность вращаться или поворачиваться друг относительно друга.
Часть электрических машин, которая включает неподвижный магнитопровод с обмоткой, называется статором, а вращающаяся часть – ротором.
Электрическая машина, предназначенная для преобразования механической энергии в электрическую, называется электромашинным генератором. Электрическая машина, предназначенная для преобразования электрической энергии в механическую, называется вращающимся электродвигателем.
Приведенные примеры использования манитомягких материалов для создания электромагнитных устройств не являются исчерпывающими. Все эти принципы также применяются при разработке магнитопроводов и других электротехнических изделий, в которых используются катушки индуктивности, например коммутационных электрических аппаратов, магнитных замков и т. п.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Практическое применение закона электромагнитной индукции Фарадея
Словом «индукция» в русском языке обозначает процессы возбуждения, наведения, создания чего-либо. В электротехнике этот термин применяется уже более двух столетий.
Через 10 лет исследований он сформулировал основной закон электромагнитной индукции, объяснив, что внутри любого замкнутого контура наводится электродвижущая сила. Ее величина определяется скоростью изменения магнитного потока, пронизывающего рассматриваемый контур, но взятую со знаком минус.
Передача электромагнитных волн на расстояние
Первая догадка, которая осенила мозг ученого, не увенчалась практическим успехом.
Он расположил рядом два замкнутых проводника. Около одного установил магнитную стрелку в качестве индикатора проходящего тока, а в другой провод подал импульс от мощного гальванического источника того времени: вольтова столба.
Исследователь предполагал, что при импульсе тока в первом контуре изменяющееся в нем магнитное поле наведет во втором проводнике ток, который отклонит магнитную стрелку. Но, результат оказался отрицательным — индикатор не сработал. Вернее, ему не хватило чувствительности.
Мозг ученого предвидел создание и передачу электромагнитных волн на расстояние, которые сейчас используются в радиовещании, телевидении, беспроводном управлении, Wi-Fi технологиях и подобных устройствах. Его просто подвела несовершенная элементная база измерительных устройств того времени.
После проведения неудачного опыта Michael Faraday видоизменил условия эксперимента.
Для опыта Фарадей использовал две катушки с замкнутыми контурами. В первый контур он подавал электрический ток от источника, а во втором наблюдал за появлением ЭДС. Проходящий по виткам обмотки №1 ток создавал вокруг катушки магнитный поток, пронизывающий обмотку №2 и образовывающий в ней электродвижущую силу.
Во время эксперимента Фарадей:
Во всех этих случаях он наблюдал проявление ЭДС индукции во второй катушке. И лишь при прохождении постоянного тока по обмотке №1 и неподвижных катушках наведения электродвижущей силы не было.
Ученый определил, что наводимая во второй катушке ЭДС зависит от скорости, с которой меняется магнитный поток. Она пропорциональна его величине.
Эта же закономерность полностью проявляется при прохождении замкнутого витка сквозь силовые магнитные линии поля постоянного магнита. Под действием ЭДС в проводе образуется электрический ток.
Магнитный поток в рассматриваемом случае изменяется в контуре Sк, созданном замкнутой цепью.
Таким способом созданная Фарадеем разработка позволила поместить в магнитное поле вращающуюся токопроводящую рамку.
Ее затем сделали из большого количества витков, закрепили в подшипниках вращения. По концам обмотки вмонтировали токосъемные кольца и щетки, скользящие по ним, а через выводы на корпусе подключили нагрузку. Получился современный генератор переменного тока.
Его более простая конструкция создалась тогда, когда обмотку закрепили на стационарном корпусе, а вращать стали магнитную систему. В этом случае способ образования токов за счет электромагнитной индукции никак не нарушался.
Принцип работы электродвигателей
Закон электромагнитной индукции, который обсновал Michael Faraday, позволил создать различные конструкции электрических двигателей. Они имеют сходное устройство с генераторами: подвижный ротор и статор, которые взаимодействуют между собой за счет вращающихся электромагнитных полей.
Майкл Фарадей определил возникновение наведенной электродвижущей силы и индукционного тока в рядом расположенной обмотке при изменении магнитного поля в соседней катушке.
Ток внутри близлежащей обмотки наводится при коммутациях цепи выключателя в катушке 1 и всегда присутствует во время работы генератора на обмотку 3.
У них для улучшения прохождения магнитного потока изолированные обмотки надеты на общий сердечник, обладающий минимальным магнитным сопротивлением. Его изготавливают из специальных сортов стали и формируют наборными тонкими листами в виде секций определенной формы, называют магнитопроводом.
Трансформаторы передают за счет взаимоиндукции энергию переменного электромагнитного поля из одной обмотки в другую так, что при этом происходит изменение, трансформация величины напряжения на входных и выходных его клеммах.
При включении выключателя на приведенной схеме индукционный ток видоизменяет характер прямолинейного нарастания рабочего тока в цепи, как и во время отключения.
Когда же к проводнику, смотанному в катушку, прикладывается не постоянное, а переменное напряжение, то через нее протекает уменьшенное индуктивным сопротивлением значение тока. Энергия самоиндукции сдвигает по фазе ток относительно приложенного напряжения.
Это явление используется в дросселях, которые предназначены для уменьшения больших токов, возникающих при определенных условиях работы оборудования. Такие устройства, в частности, применяются в схеме зажигания люминесцентных ламп.
Конструктивная особенность магнитопровода у дросселя — разрез пластин, который создается для дополнительного повышения магнитного сопротивления магнитному потоку за счет образования воздушного зазора.
Дроссели с разрезным и регулируемым положением магнитопровода используются во многих радиотехнических и электрических устройствах. Довольно часто их можно встретить в конструкциях сварочных трансформаторов. Ими уменьшают величину электрической дуги, пропускаемой через электрод, до оптимального значения.
Явление электромагнитной индукции проявляется не только в проводах и обмотках, но и внутри любых массивных металлических предметов. Наводимые в них токи принято называть вихревыми. При работе трансформаторов и дросселей они вызывают нагрев магнитопровода и всей конструкции.
Для предотвращения этого явления сердечники изготавливают из тонких металлических листов и изолируют между собой слоем лака, препятствующим прохождению наведенных токов.
В обогревательных конструкциях вихревые токи не ограничивают, а создают для их прохождения наиболее благоприятные условия. Индукционные печи широко применяются в промышленном производстве для создания высоких температур.
Электротехнические измерительные устройства
В энергетике продолжает работать большой класс индукционных приборов. Электрические счетчики с вращающимся алюминиевым диском, аналогичные конструкции реле мощности, успокоительные системы стрелочных измерительных приборов функционируют на основе принципа электромагнитной индукции.
Газовые магнитные генераторы
Если вместо замкнутой рамки в поле магнита перемещать токопроводящий газ, жидкость или плазму, то заряды электричества под действием магнитных силовых линий станут отклоняться в строго определенных направлениях, формируя электрический ток. Его магнитное поле на смонтированных электродных контактных пластинах наводит электродвижущую силу. Под ее действием в подключенной цепи к МГД-генератору создается электрический ток.
Так закон электромагнитной индукции проявляется в МГД-генераторах.
Здесь нет таких сложных вращающихся частей, как ротор. Это упрощает конструкцию, позволяет значительно повышать температуру рабочей среды, а, заодно и эффективность выработки электроэнергии. МГД-генераторы работают в качестве резервных либо аварийных источников, способных вырабатывать значительные потоки электроэнергии в малые промежутки времени.
Таким образом, закон электромагнитной индукции, обоснованный Майклом Фарадеем в свое время продолжает оставаться актуальным в наши дни.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: