результатом каких процессов является образование конечной мочи
Образование конечной мочи. Характеристика процесса реабсорбции различных веществ в канальцах и петле нефрона. Процессы секреции и экскреции в почечных канальцах.
Образование конечной мочи является результатом трех последовательных процессов.
1. В почечных клубочках происходит начальный этап мочеобразования — клубочковая, или гломерулярная, фильтрация, ультрафильтрация безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.
2. Канальцевая реабсорбция — процесс обратного всасывания профильтровавшихся веществ и воды.
3. Секреция. Клетки некоторых отделов канальца переносят из внеклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ либо выделяют в просвет канальца молекулы, синтезированные в клетке канальца.
Канальцевая реабсорбция. Вся образующаяся первичная моча поступает в канальцы и петлю Генле, где подвергается реабсорбции 178 л воды и растворенных в ней веществ. Вместе с водой в кровь возвращаются не все они. По способности к реабсорбции все вещества первичной мочи делятся на три группы:
· Пороговые (глюкоза, аминокислоты). В норме они реабсорбируются полностью.
· Низкопороговые (мочевина). Реабсорбируются частично.
· Непороговые (креатинин, сульфаты). Они не реабсорбируются..
Последние 2 группы создают осмотическое давление и обеспечивают канальцевый диурез, т.е. сохранение определенного количества мочи в канальцах, Реабсорбция глюкозы и аминокислот происходит в проксимальном извитом канальце и осуществляется с помощью транспортной системы сопряженной с натрием. Они транспортируются против концентрационного градиента. При сахарном диабете содержание глюкозы в крови становится выше порога выведения и глюкоза появляется в моче. При почечном диабете нарушается система транспорта глюкозы в эпителии канальцев и она выделяется с мочой, несмотря на нормальное содержание в крови. Реабсорбция других пороговых и непороговых веществ происходит путем диффузии. Облигатная реабсорбция основных ионов и воды происходит в проксимальном канальце, петле Генле. Факультативная в дистальном канальце. Они образуют поворотно-противоточную систему, так как в них происходит взаимный обмен ионов. В проксимальном канальце и нисходящем колене петли Генле происходит активный транспорт большого количества ионов натрия. Он осуществляется натрий-калиевой АТФазой. За натрием в межклеточное пространство происходит пассивная реабсорбция большого количества воды. В свою очередь эта вода способствует дополнительной пассивной реабсорбции натрия в кровь. Одновременно с ними реабсорбируются и гидрокарбонат анионы. В нисходящем колене петли и дистальном канальце реабсорбируется относительно небольшое количество натрия, а вслед за ним и вода. В этом отделе нефрона ионы натрия реабсорбируются с помощью сопряженного натрий-протонного и натрий-калиевого обмена. Ионы хлора переносятся здесь из мочи в тканевую жидкость с помощью активного хлорного транспорта. Низкомолекулярные белки реабсорбируются в проксимальном извитом канальце.
Канальцевая секреция и экскреция происходят в проксимальном участке канальцев. Это транспорт в мочу из крови и клеток эпителия канальцев веществ, которые не могут фильтроваться. Активная секреция осуществляется тремя транспортными системами. Первая транспортирует органические кислоты, например парааминогиппуровую. Вторая – органические основания. Третья – этилендиаминтетраацетат (ЭДТА). Экскреция слабых кислот и оснований происходит с помощью не ионной диффузии. Это их перенос в недиссоциированном состоянии. Для осуществления экскреции слабых кислот необходимо, чтобы реакция канальцевой мочи была щелочной, а для выведения щелочей – кислой. В этих условиях они находятся в недиссоциированном состоянии и скорость их выделения возрастает. Таким путем также секретируются протоны и катионы аммония.
Дата добавления: 2015-01-19 ; просмотров: 61 ; Нарушение авторских прав
4.Образование конечной мочи, ее состав и свойства. Реабсорбция в канальцах, механизм ее регуляции.
В сутки у человека образуется и выделяется от 0,7 до 2 л мочи. Эта величина носит название суточного диуреза и зависит от количества выпитой жидкости, так как здоровым человеком выделяется 65—80 % ее объема с мочой. Основное количество мочи образуется днем, тогда как ночью оно составляет не более половины дневного объема. Удельный вес мочи колеблется в широком диапазоне — от 1005 до 1025, обратно пропорционально объему принятой жидкости и образовавшейся мочи.
Реакция суточной мочи обычно слегка кислая, однако рН колеблется в зависимости от характера питания. При растительной пище моча приобретает щелочную реакцию, а при белковой — становится более кислой.
Моча обычно прозрачна, но имеет небольшой осадок, получаемый при центрифугировании и состоящий из малого количества эритроцитов, лейкоцитов и эпителиальных клеток. В осадке мочи, собранной за 12 ночных часов, содержится от 0 до 400 000 эритроцитов, от 300 000 до 1,8 миллионов лейкоцитов. Здесь также могут присутствовать кристаллы мочевой кислоты, уратов и оксалата кальция (в кислой моче) или кристаллы мочекислого аммония, фосфорнокислого и углекислого кальция (в щелочной моче). Белок и глюкоза в конечной моче практически отсутствуют, содержание аминокислот не превышает 0,5 г за сутки. Поскольку в канальцах нефрона происходит обратное всасывание основной части профильтровавшейся воды, солей и других веществ, то выделяется их с мочой от 45 % (мочевина) до 0,04 % (бикарбонат) от профильтровавшегося количества. Однако за счет всасывания воды и процессов концентрирования мочи, а также секреции в канальцах, содержание в конечной моче ряда веществ превышает их концентрацию в плазме крови: мочевины в 67 раз, калия в 7, сульфатов в 90, фосфатов в 16 раз, тем самым обеспечивается эффективность их экскреции из организма. В небольших количествах в мочу поступают производные продуктов гниения белков в кишечнике — индола, скатола, фенола. В моче содержится широкий спектр органических кислот, небольшие концентрации витаминов (кроме жирорастворимых), биогенные амины и их метаболиты, стероидные гормоны и их метаболиты, ферменты и пигменты, определяющие цвет мочи.
С мочой в разных концентрациях, зависящих от ее количества, выделяются практически все неорганические катионы и анионы, в том числе и широкий спектр микроэлементов.
При сравнении состава и количества первичной и конечной мочи выявляется, что в канальцах нефрона происходит процесс обратного всасывания воды и веществ, профильтровавшихся в клубочках, что необходимо для поддержания их внешнего баланса. Этот процесс называется канальцевой реабсорбцией и в зависимости от отдела канальцев, где он происходит, различают реабсорбцию проксимальную и дисталъную. В процессе реабсорбции вода и вещества из просвета канальцев через люминальную мембрану поступают в цитоплазму клеток эпителия, затем через базолатеральную мембрану выносятся из клеток эпителия в интерстициальное пространство, после чего поступают в перитубулярные (околоканальце-вые) капилляры. Такой путь реабсорбции носит название трансцеллюляр-ного, в его основе лежат общие механизмы транспорта веществ через плазматические мембраны. Кроме того, возможен путь реабсорбции через плотные соединения между клетками эпителия посредством простой диффузии или переносом вещества вместе с растворителем, что носит название парацеллюлярного пути реабсорбции. Реабсорбция представляет собой транспорт веществ из мочи в лимфу и кровь, и в зависимости от механизма выделяют пассивный, первично и вторично активный транспорт.
Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ первичной мочи — глюкозы, белка, аминокислот и витаминов. В проксимальном отделе канальцев всасывается 2/з профильтровавшихся воды и ионов натрия (рис. 14.7), большие количества ионов калия, двухвалентных катионов, анионов хлора, бикарбоната, фосфата, а также мочевая кислота и мочевина. К концу проксимального отдела в его просвете остается только 1/3 объема ультрафильтрата, и, хотя его состав из-за неодинаковой реабсорбции разных компонентов уже существенно отличается от плазмы крови, осмотическое давление первичной мочи остается таким же, как в плазме.
Эпителий проксимального канальца хорошо проницаем для воды, благодаря наличию в апикальной мембране водных каналов, образованных особыми белковыми молекулами аквапоринами. В структурах нефрона описано 6 типов аквапоринов, первый из них (AQP-1) имеется в мембранах клеток проксимальных канальцев (рис. 14.8). Всасывание воды происходит пассивно путем простой диффузии по осмотическому градиенту и прямо зависит от реабсорбции ионов натрия хлорида, других осмотически активных веществ. Благодаря этому содержимое проксимального отдела остается изоосмотичным плазме крови.
Реабсорбция ионов натрия в проксимальном отделе осуществляется несколькими механизмами активного и пассивного транспорта. Во-первых, реабсорбция натрия осуществляется первично активным транспортом. Ионы натрия входит в клетки эпителия через апикальную мембрану пассивно через натриевые каналы по концентрационному градиенту, его выведение через базолатеральные мембраны эпителиальных клеток происходит активно с помощью натрий-калиевых насосов, использующих энергию АТФ. Именно деятельность этих насосов обеспечивает градиент концентрации ионов натрия между внутриканальцевой и внутриклеточной средами. Во-вторых, на апикальной мембране имеется электронейтральный переносчик, обеспечивающий активный обмен Na+ и Н+, при этом ион натрия поступает в клетку в обмен на удаляемый из клетки Н-ион. Такой механизм транспорта носит название антипорта.
Этот переносчик обеспечивает и всасывание бикарбонатного аниона. Профильтровавшийся бикарбонатный анион вместе с Н-ионом образуют угольную кислоту: HCO3 + Н+ = Н2С03. Располагающаяся на щеточной каемке эпителия канальца карбоангидраза катализирует разложение в канальцевой жидкости угольной кислоты: Н2С03 о Н20 + С02, после чего С02 диффундирует в клетку по градиенту концентрации. В клетке под влинием цитоплазменной карбоангидразы протекает обратная реакция: С02 + Н20=Н2С03, угольная кислота диссоциирует: Н2С03 о Н+ + HCO3. Бикарбонатный анион (НСОз) пассивно переносится в перитубулярную жидкость по электрохимическому градиенту, создаваемому активным переносом натрия через ба-золатеральную мембрану, а Н-ион через апикальную мембрану с помощью антипорта Na+-H+ выводится в просвет канальца. Таким образом, сопровождающим всасывающийся ион натрия в начальных отделах проксимального канальца анионом является бикарбонат. Анионы хлора всасываются в начальных отделах плохо из-за низкой проницаемости стенки. Объем мочи в канальце уменьшается из-за пассивной реабсорбции воды, и концентрация хлоридов в его содержимом растет. В конечных участках проксимальных канальцев межклеточные контакты уже проницаемы для хлоридов (концентрация которых повысилась) и они пассивно по градиенту концентрации всасываются из мочи путем парацеллюлярной диффузии, создавая электрохимический градиент для натрия. В-третьих, ион натрия реабсорбируется пассивно, по электрохимическому градиенту, вслед за анионом хлора. Такой пассивный транспорт одного иона (натрия) вместе с пассивным транспортом другого (хлорида) носит название котранспорта. В-четвертых, на апикальной мембране расположены переносчики-котранспортеры натрия и органических веществ (глюкозы, аминокислот), натрия и фосфата или сульфата.
Проксимальная реабсорбция глюкозы и аминокислот осуществляется с помощью специальных переносчиков щеточной каемки апикальной мембраны эпителиальных клеток. Эти переносчики транспортируют глюкозу или аминокислоту, только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту концентрации внутрь клеток ведет к транспорту через мембрану и переносчика с глюкозой или аминокислотой. Для реализации этого процесса необходима низкая концентрация натрия в эпителиальной клетке, создающая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-калиевого насоса базальной мембраны. Поскольку перенос глюкозы или аминокислоты связан с натрием, а его транспорт определяется активным удалением натрия из клетки, такой вид транспорта называют вторично активным, или симпортом, т. е. совместным пассивным транспортом одного вещества (глюкоза) из-за активного транспорта другого (натрия) с помощью одного переносчика.
Реабсорбция пептидов и белков осуществляется практически полностью в проксимальных канальцах. Количество профильтровавшегося белка относительно невелико и составляет около 1,8 г в сутки. Некоторую его часть составляют альбумины, но фильтрационный барьер клубочков проходят и полипептиды меньшего размера, и в первичную мочу фильтруются, например, соматотропин, а также лизоцим и др. В конечную мочу поступает не более 0,15 г белка в сутки (рис. 14.10). Молекулы альбуминов после связывания с рецепторами на люминальной мембране клеток эпителия канальцев подвергаются эндоцитозу, внутриклеточные пузырьки поглощенного белка сливаются с лизосомами и белковые молекулы гидролизуются пеп-тидазами (аналог внутриклеточного пищеварения). Продукты гидролиза, в основном аминокислоты, выводятся в интерстициальную жидкость и поступают в перитубулярные капилляры. Пептиды, особенно с короткой цепью, подвергаются гидролизу ферментами щеточной каемки (аналог мембранного пищеварения), образующиеся аминокислоты реабсорбируются из просвета канальцев.
Дистальная реабсорбция ионов и воды по объему значительно меньше проксимальной. Однако, существенно меняясь под влиянием регулирующих ее, преимущественно гормональных, воздействий, она определяет состав конечной мочи и способность почки выделять либо концентрированную, либо разведенную мочу (в зависимости от водного баланса организма).
В дистальном отделе нефрона происходит активная реабсорбция ионов натрия. Хотя здесь всасывается всего 10 % от профильтровавшегося количества катиона, этот процесс обеспечивает выраженное уменьшение его концентрации в моче и, напротив, повышение концентрации в интерстициальной жидкости, что создает значительный градиент осмотического давления между мочой и интерстицием, необходимый для всасывания из мочи воды.
Анион хлора всасывается в толстой восходящей части петли Генле благодаря наличию в апикальной мембране клеток эпителия переносчика-котранспортера ионов хлора, натрия и калия, а в дистальных извитых канальцах и собирательных трубочках анион хлора реабсорбируется пассивно по электрохимическому градиенту вслед за активным транспортом натрия. Способность эпителия дистальных канальцев секретировать в мочу Н-ионы связана с реабсорбцией ионов натрия, этот вид транспорта в виде обмена натрия на протон получил название «антипорт». Активно всасывается в дистальном отделе канальцев ионы калия, кальция и фосфатов.
Стенка дистального извитого канальца из-за отсутствия аквапоринов имеет низкую проницаемость для воды и, несмотря на реабсорбцию здесь ионов натрия и хлорида, вода почти не всасывается и в собирательные трубки поступает гипотоническая моча.
Регуляция канальцевой реабсорбции осуществляется как нервным, так и, в большей мере, гуморальным путем.
Нервные влияния реализуются преимущественно симпатическими проводниками и медиаторами через бета-адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эффекты проявляются в виде активации процессов реабсорбции глюкозы, ионов натрия, воды и анионов фосфатов и осуществляются через систему вторичных посредников (аденилатциклаза — цАМФ). Нервная регуляция кровообращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирование мочи. Сосудистые эффекты нервной регуляции также опосредуются через внутри-почечные системы гуморальных регуляторов — ренин-ангиотензиновую, кининовую, простагландины и др.
Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин, называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраоптическом и паравен-трикулярных ядрах гипоталамуса, по аксонам нейронов транспортируется в нейрогипофиз, откуда и поступает в кровь. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V2-типу, на поверхности базолатеральной мембраны клеток эпителия. Образование гормон-рецепторного комплекса влечет за собой через посредство GS-белка и гуанилового нуклеотида активацию аденилатциклазы и образование цАМФ, активацию синтеза и встраивания аквапоринов 2-го типа («водных каналов») в апикальную мембрану клеток эпителия собирательных трубочек. Перестройка ультраструктур мембраны и цитоплазмы клетки ведет к образованию внутриклеточных специализированных структур, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя транспортируемой воде смешиваться с цитоплазмой и препятствуя набуханию клетки. Такой трансцеллюлярный транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных канальцах вазопрессин обусловливает активацию и выход из клеток гиалуронидаз, вызывающих расщепление гликозаминогликанов основного межклеточного вещества, тем самым способствуя межклеточному пассивному транспорту воды по осмотическому градиенту.
Канальцевая реабсорбция воды регулируется и другими гормонами. По механизму действия все гормоны, регулирующие реабсорбцию воды, делятся на шесть групп: • повышающие проницаемость мембран дистальных отделов нефрона для воды (вазопрессин, пролактин, хорионический гонадотропин); • меняющие чувствительность клеточных рецепторов к вазопрессину (паратирин, кальцитонин, кальцитриол, простагландины, альдостерон); • меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин); • меняющие активный транспорт натрия и хлорида, а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, атриопептид, прогестерон, глюкагон, кальцитонин, простагландины); • повышающие осмотическое давление канальцевой мочи за счет нере-абсорбированных осмотически активных веществ, например глюкозы (контринсулярные гормоны); • меняющие кровоток по прямым сосудам мозгового вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин-П, кинины, простагландины, паратирин, вазопрессин, атриопептид).
Канальцевая реабсорбция электролитов, так же как и воды, регулируется преимущественно гормональными, а не нервными влияниями.
Реабсорбция ионов натрия в проксимальных канальцах активируется альдостероном и угнетается паратирином, в толстой части восходящего колена петли Генле реабсорбция натрия активируется вазопрессином, глюка-гоном, кальцитонином, а угнетается — простагландинами Е. В дистальном отделе канальцев главными регуляторами транспорта натрия являются альдостерон (активация), простагландины и атриопептид (угнетение). Основной активатор реабсорбции натрия — альдостерон — обеспечивает образование и активацию всех структур, необходимых для транспорта натрия: компонентов натрий-калиевого насоса базолатеральной мембраны и ферментов его энергетического обеспечения, структур натриевых каналов апикальной мембраны и переносчиков иона
Наиболее отчетливо выражена активация реабсорбции ионов натрия под влиянием альдостерона в корковом отделе собирательных трубочек. Действие альдостерона имеет место не только в почках, но также и в желудочно-кишечном тракте, железах внешней секреции — везде этот гормон способствует всасыванию натрия в кровь. В почках альдостерон стимулирует также секрецию ионов калия в мочу.
Регуляция канальцевого транспорта ионов кальция, фосфата и частично магния обеспечивается, в основном, кальций-регулирующими гормонами. Влияния паратирина отличаются в разных отделах канальцевого аппарата почки. В проксимальных канальцах (прямой отдел) всасывание кальция происходит параллельно с транспортом натрия и воды. Угнетение реабсорбции ионов натрия в этом отделе под влиянием паратирина сопровождается параллельным снижением реабсорбции ионов кальция.
За пределами проксимального канальца паратирин избирательно усиливает реабсорбцию кальция, особенно в дистальном извитом канальце и корковой части собирательных трубочек. Реабсорбция ионов кальция активируется также кальцитриолом, а подавляется кальцитонином. Всасывание анионов фосфата в канальцах почки угнетается и паратирином (проксимальная реабсорбция), и кальцитонином (дистальная реабсорбция), а усиливается кальцитриолом и соматотропином. Паратирин активирует реабсорбцию ионов магния в корковой части восходящего колена петли Генле и тормозит проксимальную реабсорбцию аниона бикарбоната.
115) Образование конечной мочи, ее состав и свойства. Реабсорбция в канальцах, механизм ее регуляции. Процессы секреции и экскреции в почечных канальцах
Образование конечной мочи является результатом трех последовательных процессов.
I. В почечных клубочках происходит начальный этап мочеобразования — клубочковая, или гломерулярная, фильтрация, ультрафильтрация безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.
II. Канальцевая реабсорбция — процесс обратного всасывания профильтровавшихся веществ и воды.
III. Секреция. Клетки некоторых отделов канальца переносят из внеклеточной жидкости в просвет нефрона (секретируют) ряд
органических и неорганических веществ либо выделяют в просвет канальца молекулы, синтезированные в клетке канальца.
Скорость гломерулярной фильтрации, реабсорбции и секреции регулируется в зависимости от состояния организма при участии гормонов, эфферентных нервов или локально образующихся биологически активных веществ — аутакоидов.
Моча обычно прозрачна, но имеет небольшой осадок, получаемый при центрифугировании и состоящий из малого количества эритроцитов, лейкоцитов и эпителиальных клеток. В осадке мочи, собранной за 12 ночных часов, содержится от 0 до 400 000 эритроцитов, от 300 000 до 1,8 миллионов лейкоцитов. Здесь также могут присутствовать кристаллы мочевой кислоты, уратов и оксалата кальция (в кислой моче) или кристаллы мочекислого аммония, фосфорнокислого и углекислого кальция (в щелочной моче). Белок и глюкоза в конечной моче практически отсутствуют, содержание аминокислот не превышает 0,5 г за сутки. Поскольку в канальцах нефрона происходит обратное всасывание основной части профильтровавшейся воды, солей и других веществ, то выделяется их с мочой от 45 % (мочевина) до 0,04 % (бикарбонат) от профильтровавшегося количества. Однако за счет всасывания воды и процессов концентрирования мочи, а также секреции в канальцах, содержание в конечной моче ряда веществ превышает их концентрацию в плазме крови: мочевины в 67 раз, калия в 7, сульфатов в 90, фосфатов в 16 раз, тем самым обеспечивается эффективность их экскреции из организма. В небольших количествах в мочу поступают производные продуктов гниения белков в кишечнике — индола, скатола, фенола. В моче содержится широкий спектр органических кислот, небольшие концентрации витаминов (кроме жирорастворимых), биогенные амины и их метаболиты, стероидные гормоны и их метаболиты, ферменты и пигменты, определяющие цвет мочи.
В сутки у человека образуется и выделяется от 0,7 до 2 л мочи. Эта величина носит название суточного диуреза и зависит от количества выпитой жидкости, так как здоровым человеком выделяется 65—80 % ее объема с мочой. Основное количество мочи образуется днем, тогда как ночью оно составляет не более половины дневного объема.
Механизм канальцевой реабсорбции
Реабсорбция – процесс обратного всасывания ценных для организма веществ из первичной мочи. В различных частях канальцев нефрона всасываются различные вещества. В проксимальном отделе полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na, Cl. В последующих отделах реабсорбируются преимущественно электролиты, вода.
Обратное всасывание в канальцах обеспечивается активным и пассивным транспортом.
Активный транспорт – реабсорбция – осуществляется против электрохимического и концентрационного градиента. Различают два вида активного транспорта:
Первично-активный транспорт осуществляется при переносе вещества против электрохимического градиента за счет энергии клеточного метаболизма. Транспорт ионов Na происходит при участии ферментов натрий-, калий-АТФ-азы, и используется энергия АТФ.
Вторично-активный транспорт осуществляет перенос вещества против градиента концентрации без затраты энергии, так реабсорбируются глюкоза и аминокислоты. Из просвета канальца они поступают в клетки проксимального канальца с помощью переносчика, который должен присоединить ион Na. Этот комплекс способствует перемещению вещества через клеточную мембрану и поступлению его внутрь клетки. Движущей силой переносчика служит меньшая концентрация ионов Na в цитоплазме клетки по сравнению с просветом канальца. Градиент концентрации Na обусловлен активным выведением Na из клетки с помощью натрий-, калий-АТФ-азы.
Реабсорбция воды, хлора, некоторых ионов, мочевины осуществляется с помощью пассивного транспорта – по электрохимическому, концетрационному или осмотическому градиенту. При помощи пассивного транспорта в дистальном извитом канальце всасывается ион Cl по электрохимическому градиенту, который создается активным транспортом ионов Na.
Для характеристики всасывания различных веществ в почечных канальцах большое значение имеет порог выведения. Непороговые вещества выделяются при любой их концентрации в плазме крови. Порог выведения для физиологически важных веществ организма различен, выделение глюкозы с мочой наступает в том случае, если ее концентрация в плазме крови и в клубочковом фильтрате превышает 10 ммоль/л.