Как наука помогает нам в жизни
Сочинение Как наука влияет на жизнь людей
Наука – неотъемлемая часть нашей цивилизации. Она позволяет по-новому взглянуть на происхождение мира и ход вещей. Наука описывает процессы, происходящие в космосе, природе и обществе. Эта отрасль хороша и тем, что, предлагая последователю определенные факты, гарантирует их достоверность и может предложить неоспоримые доказательства.
Наука играет большую роль в восприятии мира человеком, показывая, как устроено все, окружающее его. В древние времена общество смотрело на мир в первую очередь через призму язычества: за каждым природным явлением стояло некоторое божество, регулирующее процесс. Наука позволила резко расширить границы сознания человека, и вот уже мы не сомневаемся, что молния – это статическое электричество, волны – последствия колебаний тектонических плит и движений воздушных масс. Что немаловажно, ученые могут доказать природу вышеупомянутых явлений. Таким образом, наука претендует на неоспоримую истину, и это прекрасно.
Научное познание нацелено на то, чтобы познать суть вещей, их корень и глубинные закономерности. Именно это и позволяет надстраивать словно по кирпичикам фундамент истинного знания. Каждый будущий факт опирается на предыдущий, и если вдруг тот окажется ложным, то конструкция сложится подобно карточному домику. Это значит, что любая научная теория, которая считается доказанной, имеет за спиной огромное количество опытов и экспериментов с многократно проверенными результатами.
Ученые своим упорством подают пример многим, ведь в первую очередь продуманность эксперимента, а затем и долгий труд формируют основу правильного доказательства представленных теорий.
Социальные науки, в противоположность естественным, открывают человечеству почву для всевозможных дискуссий: выдвигаются гипотезы, затем обсуждаются, публикуются трактаты. Социальные науки – это про человека и общество, они касаются нас всех в правовых, нравственных и общественных вопросах. Эти знания необходимы для комфортного и мирного существования людей бок о бок.
Так, науки – естественные ли, социальные ли, философские – это мощнейший инструмент познания окружающего мира и социума, в котором мы живем. Без науки нам было бы невозможно найти какие-либо рациональные объяснения происходящему в природе и между нами. Без наук сознание было бы гораздо уже и осталось бы на уровне древнейших людей.
Также читают:
Картинка к сочинению Как наука влияет на жизнь людей
Популярные сегодня темы
Как известно, гоголь предполагал создать цикл произведений – три тома, которые были бы немного похожи на Божественную комедию Данте.
В жизненном пути человек проходит светлый отрезок – это отрезок детства. Этому времени надлежит быть радостным, в эту пору в человеке формируется характер, отношение к себе и всему миру.
Андрей Болконский является одним из главных героев романа-эпопеи Льва Николаевича Толстого «Война и мир». Личность Болконского очень сложная и интересная
Городничий города N, Антон Антонович Сквозник-Дмухановский, первостепенный и важный персонаж произведения. Именно благодаря нему развивается действие комедии: он сообщает чиновникам
30 баллов, как наука изменила нашу жизнь
Если мы посмотрим на жизнь 100 лет назад и сравним ее с сегодняшней жизнью, мы заметим, что наука кардинально изменила человеческую жизнь. С началом промышленной революции в 18 веке влияние науки на жизнь человека быстро изменилось. Сегодня наука оказывает глубокое влияние на нашу жизнь, в основном благодаря технологиям, использованию научных знаний в практических целях.
Некоторые формы научных изобретений полностью изменили нашу жизнь. Например, холодильник сыграл важную роль в поддержании общественного здоровья с момента его изобретения. Первая машина 1880-х годов использовала множество достижений в физике, математике и технике; Первые электронные компьютеры появились в 1940-х годах одновременно с развитием электроники, физики и математики. Сегодня у нас есть дополнительные супер-быстрые суперкомпьютеры со 100% точностью.
Наука оказывает огромное влияние на нашу жизнь. Это основа многих современных технологий — инструментов, материалов, техник и источников энергии, которые облегчают жизнь и работу. Открытия ученых также помогают формировать наши представления о себе и нашем месте во вселенной.
Исследования в области пищевых технологий создали новые способы сохранить и ароматизировать то, что мы едим. Исследования в области промышленной химии создали широкий спектр пластмасс и других синтетических материалов, которые имеют тысячи применений в быту и промышленности. Синтетические материалы легко могут быть сформированы в сложные формы и могут быть использованы для производства машин, электрических и автомобильных деталей, научных, технических и промышленных инструментов, декоративных предметов, контейнеров, упаковочных материалов и многих других предметов.
1: Использование науки в повседневной жизни очень помогло нам в решении проблем, заботе о здоровье, производстве и сохранении продуктов питания, строительстве домов и предоставлении средств связи и транспорта (связанных с транспортом). Мы контролировали эпидемии и многие другие заболевания с помощью науки. Теперь мы знаем, что основной структурой ДНК и генной инженерии являются исследования, направленные на поиск правильной и правильной генной терапии для преодоления всех болезней.
2: Наука изменила людей и их жизнь, образ жизни, привычки питания, условия сна, методы заработка, общение между людьми и развлекательные мероприятия. Все виды музыкальных систем, компьютерных игр, электронных видеоигр, DVD-дисков, кино развлечений и связи были доставлены к нашей двери с помощью науки. Человеческая жизнь была совершенно иной, чем 100 лет назад. Наука дала слух глухим, глаза слепым и конечности инвалидам. Наука правильно, энергично и продуктивно развивалась, изменялась, цивилизовывалась, совершенствовалась и развивалась человеческая жизнь. Наука привнесла изысканность в жизнь человека.
Короче говоря, наука изменила, улучшила, улучшила, изменила и усовершенствовала человеческую жизнь во всех отношениях.
3: сегодня, с помощью Науки, мы можем объяснить, что было странным и таинственным для людей прошлого. Наука генетики открывает новую дверь для понимания человеческого гена и клетки.
4: Теперь люди стали более критичными и менее боязливыми, чем наши предки и предки.
5: двести лет назад детская смертность была очень высокой. В эти дни семь из восьми детей умерли до своего первого дня рождения. Теперь ожидаемая продолжительность жизни улучшилась благодаря вакцинам, лекарствам и правильной системе здравоохранения. Теперь люди живут дольше и безопаснее, чем 200 лет назад. Биохимические исследования отвечают за антибиотики и прививки, которые защищают нас от инфекционных заболеваний, а также за ряд других лекарств, используемых для преодоления конкретных проблем со здоровьем. В результате большинство людей на этой планете теперь живут дольше и здоровее, чем когда-либо прежде.
6: Затем и в возрасте до 12 лет он пал жертвой таких заболеваний, как оспа, корь, коклюш, скарлатина и дифтерия. Теперь наука победила эти болезни.
7: на более поздней стадии желтая лихорадка, малярия, тиф, холера, брюшной тиф и грипп снова оказались под угрозой. Сегодня у нас есть вакцины и медицинская помощь для решения этих проблем со здоровьем. Дальнейшие исследования продолжаются, чтобы определить причины и лечение этих и других заболеваний.
8: от одного человека болезнь распространилась к другим людям. Это называется эпидемией. Теперь мы победили эти заболевания с помощью вакцин и лекарств. Но все же наука должна проводить больше исследований и бороться с другими областями болезней.
9: Жизнь была неуверенной. Кого-то редко видели в возрасте тридцати лет, потому что многие люди умерли от болезней раньше, чем в возрасте тридцати лет. Эти условия преобладали только минуту назад.
10: в повседневной жизни мы должны общаться с различными друзьями и родственниками, различными официальными лицами и для общих целей. Многие люди, с которыми можно связаться, могут быть очень далеко. Однако время и расстояние были покорены наукой. Хотите ли вы общаться или путешествовать, оба варианта возможны быстро, энергично и быстро.
11: В настоящее время шансы заразиться детьми очень малы, так как роды обычно происходят в больницах под наблюдением команды врачей-специалистов. Наука разработала вакцины для детей младшего возраста, чтобы защитить их от будущих заболеваний.
12: молодые люди также получают своевременное лечение, и в настоящее время человек живет около семидесяти лет.
13: Наука и научные методы помогли определить причину болезни и ее предотвращение.
14: Санитария в прошлом была плачевной. Теперь у нас есть лучшие санитарные системы.
15: улицы города были немощены; не было адекватной дренажной системы. Мусор и другой мусор можно увидеть повсюду. Свиньи бродили по улицам были замечены. Люди получали воду из грязных колодцев. Теперь фильтрованная минеральная вода доступна для преодоления болезней. Управление твердыми отходами уже несколько дней не является проблемой, муниципальные городские комитеты обязаны управлять и утилизировать их с использованием новейших машин и оборудования.
16: Теперь все эти недостатки исчезли. Чистота везде. Выбрасывать мусор на улицах незаконно. Как уже указывалось, существует адекватная система дренажа и новые и улучшенные методы обращения с твердыми отходами Есть отдельные отделы, которые обеспокоены санитарным состоянием городов.
17: сто лет назад для бытовых целей воду из колодца выносили в ведра. Иногда это вредно для здоровья человека. Более того, этого было недостаточно для повседневных нужд. Но теперь фильтры для воды стали обычным явлением.
18: теперь в городах достаточно воды. Например, Лос-Анджелес получает воду по трубам из реки Колорадо, которая находится в 340 милях. Эта вода доставляется в Лос-Анджелес после надлежащего процесса фильтрации воды.
19: с помощью науки наша еда также изменяется. Мы получаем разнообразные продукты питания. В прошлом еда не могла быть сохранена. Но теперь методы быстрой заморозки позволили проводить техническое обслуживание. Благодаря современным технологиям, таким как обезвоживание и стерилизация, вероятность пищевого отравления отсутствует. Мы получаем все виды фруктов, мяса и овощей. Даже те фрукты и овощи, которые не в сезон.
20: изменяются не только наши предпочтения в еде, но также и улучшения в наших домах. Транспортные средства также значительно улучшились и изменились.
21: Наука также изменила наше отношение. Суеверия были отвергнуты, потому что для них нет научной основы. Теперь люди не боятся грозовых облаков.
22: Теперь люди больше не верят, что болезни вызваны злыми духами.
23: Астрология и предсказание потеряли свою популярность по сравнению с 100 лет назад. Никто не боится черных кошек, разбитых зеркал и числа 13. Потому что наука доказала, что такие страхи ненаучны и нелогичны.
24: Наука давно изменила ложные представления о людях, которые не подтверждаются научными фактами.
25. Исследования в области науки и техники сделали людей открытыми и космополитичными, потому что ученый не любит путешествовать по проторенной дорожке и всегда пытается открывать новые вещи, новые открытия, новые открытия и новые изобретения.
26: Наука также принесла медицинское оборудование, которое помогает спасти жизни. Аппарат для диализа почек позволяет многим людям пережить заболевание почек, которое когда-то оказалось бы смертельным, а искусственные клапаны позволяют людям, страдающим от ишемической болезни сердца, вернуться к активной жизни. С 1980-х годов лазеры используются для лечения болезненных камней в почках. Лазеры используются, когда камни в почках не проходят через тело через несколько дней, это обеспечивает быстрый и безболезненный способ разрушения камня и позволяет камням легко проходить через тело. Эта техника называется литотрипсией.
27: Артроскопическая хирургия — это метод, который использует волоконную оптику для исследования сложных суставов, таких как колено, рука, лодыжка и запястье, для оценки травмы. Это минимально инвазивная операция по восстановлению поврежденного сустава; Хирург осматривает сустав с помощью «артроскопии», делая ремонт через небольшой разрез.
28: 200 лет назад, никто даже не знает, что части человеческого тела могут быть заменены или пересажены. Сейчас трансплантация почки широко используется для спасения человеческих жизней по всему миру. Доктор Кристиан Бернард изобрел прежде всего метод трансплантации сердца. В наши дни методы пересадки глаз используются, чтобы снова увидеть этот прекрасный мир для тех, кто потерял глаза. Это все благословения науки.
29: Волны сверхвысокой частоты (УВЧ) предназначены для различных применений, включая телевидение, мобильные телефоны, радиостанции общественной безопасности, радиостанции для бизнеса, связь для военных самолетов, военный радар, беспроводные телефоны, радионяни и т. Д. Итак, кто-нибудь смотрит телевизор? беспроводная связь, разговор по мобильному телефону, отправка полиции / пожарной бригады / скорой помощи, которую они испытывают, или национальное воздушное пространство, защищенное военными самолетами, каждый использует науку, которая позволила использовать волны УВЧ. Он даже используется для лечения определенных заболеваний.
30: Для связи у нас теперь есть стационарные проводные телефоны, мобильные беспроводные телефонные аппараты, беспроводные телефоны, сотовые телефоны, беспроводные конференции, Интернет, широкополосный Интернет, электронная почта, социальные сети, спутниковая связь и многие другие способы связи. Это все благословения науки. Сегодня мы больше знаем о том, что происходит во всем мире благодаря спутниковым телеканалам. Благоприятные и научные преимущества для жизни человека безграничны.
«Создают то, чего не было раньше» Как ученые влияют на жизни миллионов людей
В последние десятилетия общество стремительно меняется, а вместе с ним и наука. Интерес к научным достижениям и их возможностям неуклонно растет, поэтому сегодня для исследователя важно не только сделать открытие, но и правильно о нем рассказать. Меняются и условия работы — ученые чаще используют цифровые технологии, улучшить которые в ближайшем будущем поможет прогресс в области создания квантовых компьютеров. «Лента.ру» и Homo Science рассказывают, как изменится деятельность ученых и методы научных открытий в будущем.
Пандемия COVID-19 существенно изменила уклад нашей повседневной жизни, сделала ученых самыми востребованными ньюсмейкерами, превратила их в самостоятельных инфлюэнсеров, которым внимают миллионы людей. В то же время руководители, принимающие стратегические решения, все чаще обращаются к отраслевым специалистам, ожидая, что их данные помогут предпринять верные шаги для стабилизации ситуации.
Ученый обязан публиковаться, представлять свои знания и результаты в научном сообществе. Наукометрия — не пустой звук, статус ученого нужно подтверждать
Научный и технический прогресс требует гораздо больше времени, чем ожидает обыватель. Три статьи Эйнштейна, выпущенные в 1905 году, или, например, публикации Уотсона и Крика об открытии структуры ДНК прогремели на весь мир, но, как правило, одна статья в научном журнале редко что-то меняет в жизни ученого и всего человечества. Трудно предсказать, какие именно исследования принесут плоды. Даже знаменитый физик Генрих Герц считал открытые им электромагнитные волны совершенно бесполезными и не мог предсказать, какое значение электромагнетизм приобретет в будущем.
Фундаментальная наука не может принести немедленных результатов, однако часто происходит так, что теоретические изыскания со временем находят применение. Любые технологии, в том числе те, что спасают человеческие жизни, опираются исключительно на фундаментальные знания, и именно кропотливая работа ученых создает задел для технологического развития и более комфортной жизни в будущем.
Доступно и популярно
«Наука помогает людям не только понять законы вселенной и все, что есть в ней здесь и сейчас, но и сделать прогноз, заложить прочный фундамент на будущее», — отмечает советник частного учреждения «Наука и инновации» Госкорпорации «Росатом», кандидат технических наук Екатерина Солнцева.
То, насколько важно общественное доверие к науке, становится понятно в периоды катастрофических событий вроде пандемии COVID-19. Люди, которые не понимают, как работает человеческий иммунитет, как действует вакцина, могут стать косвенными виновниками распространения заболевания, отказываясь от прививок без достаточных на то оснований. Схожая проблема возникает и при обсуждении климатического кризиса: далекие от науки люди считают, что роль человечества в глобальном потеплении переоценена, несмотря на то, что климатологи утверждают прямо противоположное.
Именно поэтому для ученых становится обязательной публичная активность. К примеру, научные фонды, выделяющие гранты, часто требуют, чтобы результаты работы освещались в СМИ. Как правило, этим занимаются пресс-службы научных учреждений, но некоторые ученые сами берутся за популяризацию своей области знаний, пишут книги для широкого круга читателей, выступают с публичными лекциями. Многие ученые стали настоящими иконами массмедиа и поп-культуры, как, например, астроном Карл Саган, физик Стивен Хокинг, биолог Ричард Докинз.
В России популяризация науки стала активно развиваться в 2010-х годах: появились научные блогеры, профессиональные научные журналисты и даже ученые, вокруг которых сформировалась своя фан-база. Проводятся фестивали науки и другие мероприятия, способные пробудить у общественности интерес не только к простым, но и к достаточно сложным научным темам вроде квантовой механики.
Далеко не каждый ученый может уделять время публичным лекциям, поскольку почти все оно уходит на профессиональную деятельность и обучение молодых специалистов. Однако молодые люди, которые хорошо разбираются в научных достижениях и цифровых технологиях, вполне способны взять на себя роль посредников между исследователями и обществом.
Некоторые популяризаторы активно следят за качеством информации, критикуют коллег за допущенные неточности и искажение фактов, рассказывают широкой публике, как тренировать критическое мышление, как распознавать фейки в социальных сетях и новостных изданиях.
Мне кажется, неважно, будет ли это сам ученый или коммуникатор, способный донести сложные научные термины до обывателей простым языком. Важно, чтобы это было сделано правильно, своевременно, интересно и без искажения фактов
Взрыв данных
Стремительное развитие цифровых технологий существенно расширило исследовательские ресурсы и инструментарий ученых. На повседневной основе они используют в работе не только данные экспериментов, но и результаты, полученные с помощью компьютерного моделирования. Речь идет о возможности выполнять вероятностные расчеты такой сложности, которые ранее были недоступны.
В связи с этим число публикаций растет с каждым годом. Национальный научный фонд США провел масштабное исследование, которое показало, что за последнее десятилетие объем научных статей и докладов на конференции рос на четыре процента в год. Согласно подсчетам компании Altmetric, в 2020 году, когда мир столкнулся с коронавирусом, ежегодное число научных публикаций во всем мире резко выросло и составило более трех миллионов, причем самые цитируемые статьи были связаны с исследованием SARS-CoV-2 и отслеживанием пандемии COVID-19.
Очевидно, что объем данных, которые приходится учитывать исследователю, тоже растет. В современной физике обрабатываемое количество информации намного больше, чем в банковской сфере. Что такое Big Data для современной физики, прекрасно продемонстрировала Европейская организация по ядерным исследованиям (ЦЕРН). Ежегодно Большой адронный коллайдер (БАК) производит 90 петабайт данных (один петабайт равен квадриллиону байт), а еще 25 петабайт — в ходе других экспериментов ЦЕРН. Общий объем информации, который хранится в информационных центрах ЦЕРН, уже превысил 300 петабайт. Для обработки этого колоссального количества данных используется несколько подходов.
Во-первых, создаются коллаборации, объединяющие сотни вычислительных центров по всему миру. Так называемые распределенные вычисления могут производиться не только суперкомпьютерами, но и тысячами добровольцев с персональными компьютерами.
Еще в 2004 году был запущен проект LHC@Home, который в настоящее время объединяет усилия около десяти тысяч волонтеров по всему миру, в том числе в России. Однако данные, получаемые на БАК, продолжают расти, из-за чего в скором времени может потребоваться увеличение пропускной способности сети в несколько раз. Чтобы справиться с взрывным ростом информации, которую необходимо обработать для получения ценных результатов, нужны новые подходы — например, разработка новых алгоритмов высокопроизводительных вычислений.
Это актуально не только для физики частиц, но и для других научных областей — например, молекулярной биологии и фармацевтики. Свойства жизненно важной биологической молекулы зависят от того, в какую трехмерную структуру она свернется. С размером молекулы экспоненциально растет число возможных конфигураций, и на то, чтобы предсказать правильную структуру методом перебора, у компьютера могут уйти сотни тысяч лет непрерывной работы. Решить эти проблемы могут, например, технологии машинного обучения.
Сейчас почти невозможно предсказать, что именно нужно будет знать исследователю даже в недалеком будущем. Именно поэтому появляются ученые, которые одинаково хорошо разбираются как в своей специальности, так и в вычислительных методах. Хорошим примером такого междисциплинарного подхода является биоинформатика, которая объединяет в себе не только компьютерные науки и машинное обучение, но и генетику, молекулярную и эволюционную биологию, химию и кибернетику. Компетентные ученые, занятые в этой области, могут и создавать новые алгоритмы, и со знанием дела использовать уже имеющиеся, получая ценные результаты.
Новаторские исследования, проводимые на стыке различных наук, имеют больше шансов выделиться из океана публикуемых статей, попасть в престижные научные журналы и получить признание мирового научного сообщества. Чтобы оставаться в тренде, ученые должны не только поддерживать прочные связи с коллегами и выступать на конференциях, но и осваивать новые методы исследований и быть в курсе последних научных достижений. Только так можно остаться конкурентоспособным в эпоху больших данных.
Цифровая революция
По оценкам эксперта в области искусственного интеллекта Ли Кайфу, через 15 лет ИИ сможет заменить до 40 процентов профессий. В то же время большинство экспертов сходятся во мнении, что это не станет угрозой для ученых. Хотя компьютеры могут делать открытия, характеризуя явления и генерируя научные объяснения, полностью заменить исследователей они не в состоянии.
Искусственный интеллект, по-видимому, всегда будет конечен, и его все равно нужно будет слегка направлять в нужное русло. В работе исследователя требуется нечто большее — интуиция, творчество и разум, который является бесконечным
Действительно, искусственный интеллект более приспособлен к одним аспектам научной деятельности и менее — к другим. Лучше всего у него получается обработка числовой информации, но о творческом мышлении говорить пока не приходится.
Как научить тому, чего еще нет? Именно этим занимаются настоящие ученые: они открывают новое, а не просто ведут обработку статистики. Они создают новые модели — то, чего не было раньше
По мнению лауреата Нобелевской премии Роджера Пенроуза, сознание человека зависит от неалгоритмических физических процессов, что делает его воспроизведение с помощью искусственного интеллекта практически невозможным. Философ Дэвид Гиллиес подчеркивает, что у людей есть «политическое превосходство» над ИИ: он создан и разработан человеком для того, чтобы решать его проблемы. Разрешение компьютером определенного ряда проблем создает новые проблемы, которые ИИ уже не будет способен решить.
Этот подход называется генеративным моделированием (ГМ), и он заключается в поиске наиболее вероятного объяснения наблюдаемых данных. Например, астрофизики использовали ГМ для исследования эволюции галактик, при этом задача состояла в том, чтобы найти в данных скрытые закономерности. ИИ определил, что чем больше плотность окружения галактик, тем краснее становятся сами галактики.
Чтобы объяснить, почему это происходит, ученые вмешиваются в модель и изменяют некоторые параметры, а потом исследуют результат. Меняя скорость формирования звезд, ученые сумели изменить цвет галактик в модели, что указывает на связь этих параметров. Это похоже на обычную симуляцию, однако для этой модели не требуются предварительные знания о процессах, происходящих в галактиках. Данные сами показывают то, что ученые хотят знать. Это похоже на то, как человек определяет пол другого человека по лицу, не строя для этого подробные теоретические модели.
Астрофизик Кевин Шавинский называет генеративное моделирование третьим способом изучения Вселенной — наряду с наблюдением и экспериментом. Однако многие ученые рассматривают ИИ лишь как «усердного ассистента», готового взять на себя рутину и оставляющего исследователю простор для творчества. ИИ также способен значительно ускорить научные исследования, что очень важно в эпоху больших данных.
С компьютерным моделированием тесно связано еще одно направление цифровых технологий — создание цифровых двойников. Так называются виртуальные копии физических объектов или процессов, которые точно воспроизводят свойства оригинала. Ученые создают цифровых двойников, чтобы предсказывать, как поведет себя та или иная система в определенных условиях. Например, можно создать виртуальную копию какого-либо материала, чтобы посмотреть, как на него будет действовать высокая или низкая температура, давление или сильная деформация.
Цифровые технологии значительно изменят науку будущего, предоставляя ученым новые инструменты для познания Вселенной. Компьютерное моделирование, ИИ и роботизированные системы сделают исследовательские процессы более интересными, позволят талантливым ученым сделать еще больше открытий и ускорят научный прогресс.
Квантовая революция
Одним из перспективных направлений является разработка квантовых компьютеров, которые способны дать толчок развитию многих сфер науки. Например, такие машины могут улучшить понимание искусственным интеллектом естественного языка, дать ему возможность анализировать целые предложения и фрагменты текста вместо отдельных слов. Квантовый компьютер способен совершить революцию в разработке синтетических лекарств и биоактивных материалов, а также значительно ускорить обработку больших данных. От обычных компьютеров квантовые машины отличаются принципиально иной архитектурой, которая позволяет им проводить множество вычислений одновременно.
Квантовый компьютер имеет серьезное преимущество в вычислительной мощности. Представьте, что на обычном компьютере нужно сделать вычисление из десяти последовательных шагов, обработать полученный результат на первом шаге, запустить второй шаг моделирования, снова обработать результат, запустить третий — и так далее. В квантовом компьютере нужно будет сделать только один шаг со всеми условиями, и программа позволит смоделировать все возможные результаты эксперимента
Считается, что квантовые компьютеры могут предоставить ученым и медицинским специалистам возможность решать задачи, на которые даже с помощью самых мощных суперкомпьютеров уйдут тысячи лет. Ученые надеются, что квантовые вычисления и моделирование ускорят разработку вакцин против инфекционных заболеваний, помогут предотвращать эпидемии, позволят быстрее создать препараты от рака и нейродегенеративных нарушений, таких как болезни Альцгеймера и Паркинсона.
Квантовые компьютеры могут быть полезны не только в биологии или моделировании процессов, они также помогут в разработке катализаторов для утилизации углекислого газа из атмосферы, что позволит бороться с изменением климата. Они ускорят решение задач, сложность которых растет экспоненциально, — например, так называемой задачи коммивояжера, которая заключается в поиске оптимального маршрута. Соответственно, с помощью квантовых вычислений можно оптимизировать потоки данных в сети, что имеет огромное значение, например, для обработки петабайтов данных, полученных в ЦЕРН и других ускорительных лабораториях.
Однако, как отмечает информатик-теоретик Скотт Ааронсон, квантовые компьютеры в том виде, в котором они есть сейчас, представляют собой «ненатуральные» устройства — иными словами, наилучшего эффекта от их использования можно достичь лишь при ограниченном наборе применений, в частности, связанных с моделированием квантовых систем. «Несмотря на то что квантовые компьютеры сохранят свое теоретическое превосходство, их практический вклад будет невелик», — предупреждает исследователь.
«Полезный» же квантовый компьютер, который будет решать важные задачи, с которыми иначе бы справиться не удалось, потребует наличия гораздо большего количества кубитов, чем имеют нынешние прототипы. Впрочем, по заявлениям одного из разработчиков квантовых компьютеров PsiQuantum, производить универсальные устройства — пока размером с целую комнату — начнут уже в ближайшие годы.
В России разработкой таких компьютеров занимается Национальная квантовая лаборатория, основанная под эгидой «Росатома». Полноценное устройство для квантовых вычислений планируется создать к 2024 году, стоимость проекта составляет 24 миллиарда рублей. Сегодня в России уже имеются прототипы, состоящие из нескольких кубитов.
Квантовые компьютеры не смогут полностью заменить обычные компьютеры, но расширят возможности ученых в моделировании сложных процессов. Поскольку стоимость таких машин очень велика, далеко не каждое научное учреждение сможет его себе позволить, не говоря уже о том, чтобы приобрести персональный квантовый компьютер. Решить эту проблему может удаленный доступ через облачные платформы. В этом случае пользоваться квантовыми компьютерами смогут как государственные организации и корпорации, так и научные центры и университеты.
В настоящее время наука как никогда ранее важна для человечества. Не имея специализированных знаний о природе, нельзя справиться с вызовами современности — пандемией, изменением климата и другими кризисами. В то же время происходит взрывной рост объемов данных, который влияет на развитие новых информационных технологий. Многие молодые люди понимают, что научная карьера может быть перспективной и актуальной, однако для этого нужно много и упорно работать, быть открытым ко всему новому и одновременно развивать критическое мышление. Ученый будущего должен постоянно осваивать новые технологии и взаимодействовать с коллегами, чтобы быть в курсе современных тенденций. Только в этом случае наука будет развиваться, улучшая жизнь человечества.
Но наука будущего — это не только мир профессиональных ученых. Общество должно понимать, насколько важны научные открытия и разработки. Научная безграмотность не только делает людей уязвимыми для опасной дезинформации, например, о вреде или бесполезности вакцин, но и ставит под угрозу само развитие науки.