прилегает к ядру какая эпс

Вопрос 1. Чем образованы стенки эндоплазматической сети и комплекса Гольджи?
Стенки эндоплазматической сети и комплекса Гольджи образованы однослойной мембраной.

Вопрос 5. Почему аппарат Гольджи чаще расположен вблизи от ядра клетки?
Основные функции аппарата Гольджи:
1)обезвоживание, накопление и упаковка веществ в мембраны;
2)транспорт веществ из клетки;
3)синтезирует полисахариды и присоединяет их к белкам с образованием гликопротеидов, которые обновляют гликокаликс. Гликопротеин (муцин) является важной частью слизи;
4)образует первичные лизосомы;
5)формирует включения;
6)участвует в обмене веществ в клетке;
7)формирует пероксисомы или микротельца;
8) сборка и «рост» мембран, которые затем окружают продукты секреции;
9)участвует в секреции воска растительных клеток.
Из чего следует, что основная функция аппарата Гольджи — накапливание веществ, которые синтезирует клетка. Эти вещества важны для основных процессов жизнедеятельности клетки, особенно при ее делении. В результате этого процесса образуются дочерние клетки, которым нужен запас органических веществ, играющих роль строительного материала и энергетических ресурсов. Это и объясняет расположение аппарата Гольджи вблизи ядра клетки.

Вопрос 6. Почему в эритроцитах аппарат Гольджи отсутствует?
Эритроциты представляют собой специализированные клетки крови, выполняющие газотранспортную функцию. Зрелые эритроциты имеют постоянную форму, не растут и не делятся. Поэтому они не содержат аппарата Гольджи.

Источник

Эндоплазматическая сеть (ЭПС) — строение, виды и функции

Постоянным компонентом любой эукариотической клетки является эндоплазматическая сеть. Строение и функции этой органеллы отличаются особой сложностью. ЭПР, или эндоплазматический ретикулум, состоит из системы плоскостей, канальцев и пузырьков, покрытых защитной мембраной. Структура была открыта и изучена только в 1945 г. учёными из области биологии. Что такое эндоплазматическая сеть в клетке и каково её значение? Эти вопросы до сих пор до конца не изучены.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Строение и расположение ЭПР

Важная клеточная структура была открыта ученым-биологом К. Портером. Эндоплазматическая сеть, расположенная в цитоплазме, может занимать до 30% всей площади клетки. В её состав входит большое количество полостей разного размера. Чем интенсивнее обмен веществ в клетке, тем больше каналов, трубочек и цистерн в этом органоиде.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Полости ЭПР заполнены однородным веществом — матриксом. Эта субстанция связывает систему с:

Оболочка ЭПР идентична основной мембране. Она также состоит из фосфолипидов, холестерина, белков и различных ферментов. Полости, покрытые мембраной, образуют систему параллельно расположенным каналам. При изучении органоида электронным микроскопом можно увидеть структуру, напоминающую лабиринт с отростками и обособленными частями.

К стенке сети могут крепиться рибосомы. Именно количество этих структур, соединённых с мембраной, определяют вид ЭПС.

Типы эндоплазматического комплекса

Классификация ЭПР проводится по единственному критерию — наличию рибосом на поверхности мембраны. Рибосома — это шарообразная молекула, которая образована специфическими рибонуклеиновыми кислотами. Большинство биологов выделяют 2 вида ЭПС:

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Рисунок гранулярной ЭПР выглядит неоднородно, такому виду эндоплазматической сети дали определение шероховатой. Этот органоид отсутствует только в клетках мужских половых органов. Наиболее развита шероховатая ЭПС в клетках, продуцирующих железы.

На поверхности гладкого эндоплазматического ретикулума нет рибосом. Эта структура есть во всех клетках живых организмов. Уровень развития этого комплекса зависит от функций определённой клетки. Такая сеть образуется за счёт освобождения или сброса рибосом с поверхности оболочки. Подробная информация представлена в таблице.

Некоторые учёные выделяют третий тип органоида — переходный. К этому классу относят ЭПС с небольшим количеством рибосом на поверхности.

Роль органоида

ЭПС является уникальной транспортной системой. Однако именно тип эндоплазматического ретикулума определяет перечень функций органеллы в жизнедеятельности клетки.

Общие функции

Эндоплазматическая сеть за счёт её уникального строения выполняет 2 основные функции: транспорт и синтез веществ. При помощи мембранной оболочки, каналов и трубочек питательные вещества переносятся из одной части клетки в другую. Таким образом поддерживается связь между всеми органеллами. Ряд важнейших элементов переносится через оболочку против градиента концентрации.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Ферменты, входящие в состав стенки ЭПС, синтезируют липиды. Образованные элементы позволяют:

Снаружи и внутри оболочки комплекса образуется разница потенциалов. Это позволяет проводить импульсы возбуждения. ЭПС является накопителем кальция, который играет важную роль в сокращении мышечной ткани.

Другой важнейшей функцией ЭПР является структурирование. Полости и мембраны, которые пронизывают цитоплазму, не позволяют смешиваться веществам и смещаться органоидам в клетке. Специфические функции определяются видом ЭПР.

Значение гладкой ЭПС

Агранулярная (гладкая) сеть задействована во всех процессах обмена веществ в клетке. Несмотря на то что на поверхности стенки ЭПС нет большого количества рибосом, она активно участвует в образовании гормонов. Например, гладкая сеть особенно развита в органах, продуцирующих половые и стероидные гормоны, в коре надпочечников.

Кроме этого, эндоплазматический ретикулум выполняет ключевую роль в росте и развитии всех растений. Сеть участвует в синтезе особых структур — провакуолей. Этот органоид позволяет накапливать питательные вещества, необходимые для роста. Кроме ЭПС, он может быть синтезирован только аппаратом Гольджи.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

В этом органоиде накапливаются углеводы, а затем синтезируются в более простые части. В том числе в ЭПР происходит распад сложных углеводов до глюкозы. Это позволяет регулировать уровень сахара в крови.

В полостях комплекса накапливаются не только углеводы, но и продукты гидролиза. Особенное значение имеет накопление кальция в каналах ЭПС. Это вещество играет ключевую роль в функционировании мышечной ткани. Поэтому в клетках мышц ЭПС развита настолько, что её выделяют в отдельный тип — саркоплазматический ретикулум. За счёт выброса кальция в межклеточное и внутриклеточное пространство происходит сокращение ткани.

Гладкая сеть наиболее уязвима по отношению к факторам внешней среды. Поэтому довольно часто наблюдаются её повреждения. Это приводит к ослаблению клетки и всего организма, может способствовать развитию различных заболеваний.

Особенности шероховатой сети

В связи со сложным строением этот вид комплекса выполняет не только функции, перечисленные выше, но и ряд других специфических.

Рибосомы на поверхности эндоплазматического ретикулума обуславливают основную функцию этого органоида. Именно в ЭПС происходит образование почти всех видов белков. Синтез протекает в несколько сложных этапов:

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Кроме этого, шероховатая ЭПС выполняет структурную функцию. Такой органоид, как аппарат Гольджи, полностью формируется при помощи ЭПР.

Из-за своего сложного строения эндоплазматическая сеть до сих пор до конца не изучена. Даже в XXI веке учёные продолжают оценивать роль этого важного клеточного органоида.

Источник

Шероховатая эндоплазматическая сеть

Эндоплазматический ретикулум (ЭПР) (лат. reticulum — сеточка) или эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Содержание

История открытия

Впервые эндоплазматический ретикулум был обнаружен американским учёным К. Портером в 1945 году посредством электронной микроскопии.

Строение

Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.

Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации. Нити, образующие эндоплазматический ретикулум имеют в поперечнике 0,05-0,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев составляет около 50 ангстрем (5 нм, 0.005 мкм). Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.

Трубочки, диаметр которых колеблется в пределах 0.1-0.3 мкм, заполнены гомогенным содержимым. Их функция — осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.

Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.

Выделяют два вида ЭПР:

На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом, которые отсутствуют на поверхности агранулярного ЭПР.

Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке.

Функции эндоплазматического ретикулума

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов и стероидов. Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция, который является, в частности, медиатором сокращения мышечной клетки. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума — саркоплазматическая сеть.

Функции агранулярного эндоплазматического ретикулума

Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма. Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов, жирных кислот и стероидов. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, обеззараживании клетки и запасании кальция. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.

Синтез гормонов

К гормонам, которые образуются в агранулярном ЭПС, принадлежат, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников. Клетки яичек и яичников, ответственные за синтез гормонов, содержат большое количество агранулярного эндоплазматического ретикулума.

Накопление и преобразование углеводов

Углеводы в организме накапливаются в печени в виде гликогена. Посредством гликолиза гликоген в печени трансформируется в глюкозу, что является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови.

Нейтрализация ядов

Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют встретившиеся молекулы активных веществ, которые таким образом могут быть растворены быстрее. В случае непрерывного поступления ядов, медикаментов или алкоголя, образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.

Саркоплазматический ретикулум

Особую форму агранулярного эндоплазматического ретикулума, саркоплазматический ретикулум, образует ЭПС в мышечных клетках, в которых ионы кальция активно закачиваются из цитоплазмы в полости ЭПР против градиента концентрации в невозбуждённом состоянии клетки и освобождаются в цитоплазму для инициации сокращения. Концентрация ионов кальция в ЭПС может достигать 10 −3 моль, в то время как в цитозоле порядка 10 −7 моль (в состоянии покоя). Таким образом, мембрана саркоплазматического ретикулума обеспечивает активный перенос против градиентов концентрации больших порядков. И приём и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи от физиологических условий.

Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как: активация или торможение ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток имунной системы.

Функции гранулярного эндоплазматического ретикулума

Гранулярный эндоплазматический ретикулум имеет две функции: синтез белков и производство мембран.

Синтез белков

Белки, производимые клеткой, синтезируются на поверхности рибосом, которые могут быть присоединены к поверхности ЭПС. Полученные полипептидные цепочки помещаются в полости гранулярного эндоплазматического ретикулума (куда попадают и полипептидные цепочки, синтезированные в цитозоле), где впоследствии правильным образом обрезаются и сворачиваются. Таким образом, линейные последовательности аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трёхмерную структуру, после чего повторно перемещаются в цитозоль.

Синтез мембран

Рибосомы, прикреплённые на поверхности гранулярного ЭПР, производят белки, что, наряду с производством фосфолипидов, среди прочего расширяет собственную поверхность мембраны ЭПР, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.

Источник

Строение и функции эндоплазматической сети: гладкая и шероховатая ЭПС

Строение эндоплазматической сети

Прежде чем перейти к строению и функциям ЭПС, дадим ее определение.

Что такое ЭПС в биологии?

Эндоплазматическая сеть, а также ЭПС или эндоплазматический ретикулум — сложная ультрамикроскопическая разветвленная и взаимосвязанная система мембран, относительно равномерно пронизывающая цитоплазматическую массу всех эукариотических клеток.

Что такое ЭПС теперь понятно. Вот как выглядит эндоплазматическая сеть на рисунке:

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

На рисунке ЭПС видно, из чего она состоит. Также рисунок ЭПС демонстрирует два вида ЭПС, о которых подробнее будет написано ниже.

Описание строения и функций ЭПС нужно начинать с того, что ЭПС — это мембранная органелла, которая включает в себя плоские мембранные мешочки: цистерны, каналы и трубочки. За счет такого строения ЭПС способствует существенному увеличению площади внутренней клеточной поверхности и делению клетки на секции. Строение эндоплазматической сети предполагает, что внутри клетки находится матрикс, представляющий собой умеренно плотный и рыхлый материал, то есть, продукт синтеза.

В каждой из секций клетки содержится различное количество химических веществ. По этой причине химические реакции в незначительном объеме клетки могут происходить одновременно или в определенной последовательности.

Особенность строения эндоплазматической сети — это ее открытие в перинуклеарное пространство, которое представляет собой полость, находящуюся между двух мембран кариолемы.

Еще один важный момент, касающийся строения ЭПС, заключается в том, что ее мембрана состоит из белков, липидов (в большей степени из фосфолипидов) и ферментов (аденозинтрифосфатаза, ферменты синтеза мембранных липидов).

В некоторых случаях выделяют переходящую или транзиторную эндоплазматическую сеть (тЭС). Она размещается в месте перехода одного вида ЭС в другой.

Гранулярная эндоплазматическая сеть характерная для всех клеток за исключением сперматозоидов. Степень развития этой сети зависит от специализации клетки.

Эндоплазматическая сеть в клетках эпителиальных железистых (печени — ее клетки синтезируют альбумины сыворотки крови, поджелудочной железы — ее клетки вырабатывают пищеварительные ферменты), фибробластах (клетки соединительной ткани — продуцируют белок коллаген), плазматических клетках (производят иммуноглобулины) развита очень сильно.

Агранулярная ЭС характерна для клеток надпочечников (они синтезируют стероидные гормоны), клеток мышц (они участвуют в обмене кальция) и клеток фундальных желез желудка (они работают над выделением ионов хлора).

Еще одни вид мембран цитоплазматической сети — разветвленные мембранные трубочки. Внутри них находится множество специфических ферментов, а также везикулы, которые представляют собой небольшие пузырьки, окруженные мембраной, чаще всего находящиеся около трубочек и цистерн. Их роль — обеспечение переноса синтезируемых веществ.

Это что касается особенностей строения эндоплазматической сети.

Теперь перейдем к функциям ЭПС.

Функции эндоплазматической сети

Говоря о строении и функциях эндоплазматической сети, важно напомнить следующее.

Эндоплазматический ретикулум — это аппарат синтеза и транспорта цитоплазматических веществ (в некоторой степени), за счет которого клетка может выполнять достаточно сложные функции.

К функциям ЭПС обоих видов относится все, что связано с синтезом и транспортом веществ. Что такое эндоплазматическая сеть в этом случае? Ретикулум — это универсальная транспортная система. Поэтому неудивительно, что выделяют определенные функции эндоплазматического ретикулума.

Общих функций у эндоплазматической сети обоих видов немало.

Благодаря своему содержимому (матриксу) и мембранам обе ЭПС в клетке выполняют общие функции.

Функции гладкой ЭПС и функции шероховатой ЭПС:

Какие функции выполняет эндоплазматическая сеть в растительной клетке? В растительной клетке эндоплазматическая сеть выполняет функцию синтеза провакуолей, которые обеспечивают жизнь растительной клетки.

У каждого вида ЭПС есть свои специфические функции, которые зависят от строения и функций эндоплазматической сети в целом.

Функции гладкой ЭПС (агранулярной)

Гладкий эндоплазматический ретикулум помимо тех функций, что были перечислены выше, выполняет еще кое какие специфические функции:

Функции шероховатой ЭПС (гранулярной)

Для гранулярной эндоплазматической сети характерны следующие функции:

Множество функций ЭПС имеет отношение к транспорту белков, синтез которых осуществляется в рибосомах (они расположены на поверхности ЭПС). Белки после синтеза перемещаются внутрь сети, затем скручиваются и получают, таким образом, третичную структуру.

В процессе транспортировки к цистернам белок существенно изменяется. В некоторых случаях, к примеру, происходит его фосфориллирование или превращение в гликопротеин. Привычный путь для белка пролегает через зернистую ЭПС в аппарат Гольджи. Отсюда у него есть три варианта: выйти наружу клетки, поступать к другим органеллам той же клетки (к лизосомам) или отложиться как запасные гранулы.

Зернистая и незернистая эндоплазматическая сетка участвуют в клетках печени в детоксикации ядовитых веществ, которые после этого успешно выводятся из клетки.

У эндоплазматической сетки, как и у внешней плазматической мембраны, наблюдается избирательная проницаемость. В результате концентрация веществ внутри и снаружи каналов сетки получается неодинаковой. Этот момент важен для функции клетки.

Эндоплазматическая сетка мышечных клеток содержит больше ионов кальция, чем ее цитоплазма. Ионы кальция, покидая каналы эндоплазматической сетки, запускают процесс, связанный с сокращением мышечных волокон.

Ферменты самой сети синтезируют липидные компоненты мембран ЭПС, а белковые компоненты поступают из рибосом, которые находятся на ее мембранах. Гладкая ЭПС не обладает собственными факторам синтеза белка. Принято считать, что образование этой органеллы происходит как результат потери гранулярной ЭПС рибосом.

Строение и функции эндоплазматической сети в таблице (и других органоидов клетки):

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс​​​​​​​​​​​​​​

Источник

Органоиды клетки

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Клеточная мембрана (оболочка)

Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. «Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.

Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.

Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.

В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Клеточная стенка

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Цитоплазма

Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Прокариоты и эукариоты

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Немембранные органоиды

Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Одномембранные органоиды

ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.

Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.

В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.

Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.

Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Двумембранные органоиды

Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.

Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.

Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.

Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.

прилегает к ядру какая эпс. Смотреть фото прилегает к ядру какая эпс. Смотреть картинку прилегает к ядру какая эпс. Картинка про прилегает к ядру какая эпс. Фото прилегает к ядру какая эпс

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *