сухое голодание или голодание на воде что лучше
Скажите, кто из нас, потребляя ароматный кусок поджаренного мяса или свежую котлету, задумывался над тем, а хватит ли в организме кислоты и щелочи это все переработать? Кислотно-щелочной баланс, как выяснили в нашем веке ученые, и есть главное, от чего зависит, насколько человек будет здоров, бодр и весел. На упаковке почти любого продукта питания Вы можете найти информацию о том, сколько в нем содержится белков, жиров и углеводов и какова энергетическая ценность 100 г этой пищи.
Кислотная нагрузка (КН) измеряется по принципу кислота минус щелочь.
Когда в пище преобладают компоненты, образующие серную кислоту (серосодержащие аминокислоты в белках) или органические кислоты (жиры, углеводы), то КН имеет положительную величину.
Если в пище больше компонентов, образующих щелочь (органические соли магния, кальция, калия), то КН представляет собой отрицательную величину.
На основе компьютерного анализа этими учеными была составлена таблица кислотной нагрузки основных продуктов питания.
Кислотная нагрузка основных продуктов питания (в миллиэквивалентах на 240 килокалорий)
Кислые продукты
Нейтральные продукты
Щелочные продукты
Молоко и йогурт = 2,8
Источник: Американский журнал клинического питания. 2002,76(6) 1308-1316
pH, или показатель кислотно-щелочного равновесия
Это мера относительной концентрации водородных (Н+) и гидроксильных (ОН-) ионов в жидкой системе и выражается в масштабе от 0 (полное насыщение ионами водорода Н+) до 14 (полное насыщение гидроксильными ионами ОН-), дистиллированная вода считается нейтральной с рН 7,0.
Повышение концентрации положительных ионов водорода (Н+) в любой из жидких сред организма вызывает смещение значений рН в сторону нуля и носит название кислотного сдвига.
Повышение концентрации гидроксильных ионов ОН вызывает смещение значений рН в сторону значения 14 и носит название щелочного сдвига.
рН артериальной крови= 7,35-7,45 рН венозной крови=7,26-7,36 рН лимфы= 7,35-7,4 рН межклеточной жидкости=7,26-7,38 рН внутрисуставной жидкости=7,3
Питание современного человека характеризуется дисбалансом ионов водорода и бикарбоната, что вызывает пожизненный, слабовыраженный болезнетворно (патогенно) существующий системный метаболический ацидоз (закисление).
По данным антропологов рацион древнего человека состоял на 1/3 из нежирного мяса и на 2/3 из растительной пищи. В этих условиях питание носило исключительно щелочной характер.
Кислотная нагрузка пищи древнего человека составляла в среднем минус 78.
Ситуация принципиально изменилась с возникновением аграрной цивилизации, когда человек стал употреблять в пищу много зерновых культур, молочные продукты и жирное мясо одомашненных животных.
Но особенно драматические сдвиги в питании произошли в конце 20 века, когда рацион заполнили промышленно обработанные кислые продукты питания.
Эти изменения в составе диеты были названы факторами риска в патогенезе болезней цивилизации: атеросклероза, гипертонии, остеопороза, диабета 2 типа.
Кислотная нагрузка пищи современного человека составляет плюс 48.
Диета современного человека богата насыщенными жирами, простыми сахарами, поваренной солью и бедна клетчаткой, магнием и калием. В ней доминируют рафинированные и обработанные продукты, сахар, мучные изделия, множество полуфабрикатов.
Что представляет собой пища современного человека? Это пицца, чипсы, глазированные сырки, новоявленные чудо-молочные продукты, кондитерские изделия, прохладительные сладкие напитки. Эта пища имеет кислые валентности. Организм постоянно стремится уравновесить это соотношение, поддерживая строго определенный уровень рН. Этот параметр оказывает существенное влияние на все биохимические процессы в организме.
Чем же опасно закисление организма?
Снижение рН в организме приводит к снижению иммунитета и появлению более чем 200 заболеваний, включая дальнозоркость и катаракту, хондрозы, желчнокаменную, почечнокаменную болезни, онкологию. Если у одного человека проявляется несколько заболеваний одновременно, налицо явное падение рН крови. Естественно, что восстановлении рН до нормы, является необходимым условием лечения этих состояний.
При снижении рН, т.е. при повышении кислотности, отмечается:
Что нельзя делать при выпадении волос
10 “нельзя” или что не рекомендуется делать при выпадении волос
Волосы у человека давно уже утратили свою биологическую целесообразность – они не защищают нас от холода и ветра, других негативных факторов. Единственная функция, которую продолжает осуществлять волосяной покров, – это эстетическая.
Волосы представляют и для мужчин, и для женщин, огромную психологическую ценность, а их потеря становится для большинства тяжелой эмоциональной трагедией. Необходимо хорошо представлять, что запрещено делать при выпадении волос, ведь неправильное поведение в этот момент может повлиять на течение процесса потери волос и привести к его усугублению.
Какие ошибки мы совершаем, столкнувшись с выпадением волос
При выпадении волос нельзя паниковать
Всем известна тесная взаимосвязь процесса выпадения волос и состояния психо-эмоционального фона. Ведь стресс является фактором-причиной выпадения, а может и затягивать выпадение, вызванное другими факторами. Перспектива грядущего облысения – одна из основных причин, способствующих появлению невроза, особенно у женщин, от природы обладающих густым волосами. Чем дольше протекает выпадение, тем больше становится страх потерять «последние» волосы и возрастает акцентуация на факте выпадения. Необходимо понять, что сильные и внезапные формы выпадения волос чаще всего являются наиболее благоприятными, чаще всего они имеют четкую связь с перенесенной температурой, заболеванием, лекарством и т.д., и в большинстве случаев проходят даже сами по себе.
Нельзя мыть голову редко
Мытье головы является важной мерой ухода за волосами, особенно в период активного выпадения волос. Ограничение кратности мытья, особенно боязнь мытья головы, нежелательна не только с психологической точки зрения, но и с точки зрения здоровья. Сальный секрет, накапливающийся на поверхности головы при редком мытье, может являться причиной воспаления кожи и усугубления выпадения волос. Наоборот, трихологи рекомендуют в периоды активного выпадения усиливать очищение кожи – использовать активные медицинские шампуни, регулирующие сальность, и пилинги, эксфолианты.
Нельзя ограничивать расчесывание волос, «накапливать» выпадающие волосы
Стадия выпадения волоса длится 3 месяца – это период от прекращения роста волоса до того момента, как волос покидает кожу головы. Если волосы не вычесывать вовремя, то мертвый волос механически будет препятствовать росту «нового» волоса, растущего вместо него.
Нельзя находиться на солнце без головного убора
Доказана роль негативного влияния ультрафиолета на потерю волос. Чем интенсивнее выпадение, чем более редкими волосы становятся, тем больше будет прогрессия процесса потери волос.
Нельзя собирать и подсчитывать выпавшие волосы
По статистике трихологов, собирание и подсчет волос, которые покинули голову, обладает только негативным эффектом на течение выпадения волос. Собирание волос способствует акцентуации женщин на процессе потери волос, невротизирует, а ни в коем случае не позволяет понять, насколько выпадение превышает суточную норму.
Нельзя втирать масла в кожу головы
Кожа головы относится к зоне с очень высокой секрецией кожного сала. Дополнительное нанесение жирных средств, особенно масел, которые обладают комедоногенным действием, может способствовать появлению воспаления, перхоти и болезненности кожи и усугубить выпадения.
Нельзя сидеть на гипокалорийной и безбелковой диете
Клетки волосяного фолликула относятся к одним из наиболее интенсивно делящихся клеток человеческого организма, именно поэтому им требуется большое количество энергии для нормального метаболизма. Считается, что калорийность пищевого рациона менее 1200 ккал может приводить к выпадению волос. Что касается белка, это основной структурный элемент стержня волоса (белок кератин), поэтому в пищевом рационе обязательно должны присутствовать все незаменимые аминокислоты.
Нельзя отменять оральные контрацептивы
Многие из существующих оральных контрацептивов обладают положительным влиянием на рост волос, поскольку содержать женские гормоны эстрогены, а в ряде случаев снижают и мужские. Отменять «подпитывающие» фолликул препараты не целесообразно в момент выпадения, когда клетки волоса и так слишком чувствительны ко всем неблагоприятным факторам.
Нельзя лечить волосы иммуностимуляторами и противогельминтнами препаратами
По старинке, часть врачей связывают выпадение волос со сниженным иммунитетом или глистной инвазией, назначая соответствующие препараты для «лечения» потери волос. На самом деле большинство иммуностимуляторов и антигельминтных лекарств, наоборот, являются «виновниками» выпадения.
Нельзя самостоятельно начинать и отменять препараты с миноксидилом
Миноксидил – единственный препарат для наружного применения, который имеет высокую степень эффективности при поредении волос. В России он находится в свободной продаже и часто начинает применяться самостоятельно, по рекомендации фармацевта или консультанта в интернете. Тем не менее, миноксидил – препарат для постоянного применения, который обладает «синдромом отмены», может вызывать нежелательные явления и дает усиления в начале применения. Именно поэтому при острых, доброкачественных формах выпадения, при диффузном выпадении он может только навредить.
Не стоит отчаиваться, столкнувшись с выпадением волос. Чаще всего, это временное явление, которое не принесет непоправимых последствий. Помните, что если выпадение волос продолжается до 3 месяцев, волосы покидают голову со всей поверхности, – это острое выпадение, которое при правильном уходе пройдет даже само по себе.
Можно ли похудеть при помощи голодания и опасно ли оно для здоровья. Отвечает диетолог
Что такое голодание?
Само слово «голодание» говорит за себя — полный отказ от пищи. В наше время такой способ похудения становится все более популярным, хотя голодание ещё несколько тысяч лет назад в различных религиях было способом очищения и просветления.
Отказ от пищи многими воспринимается как самоистязание и тяжелый путь, для других же это обычный образ жизни. Традиционная медицина не считает голодание способом лечения, тогда как ряд методик нетрадиционной медицины говорит, что отказ от еды на непродолжительное время может избавить от различных заболеваний.
Человек употребляет пищу, в которой содержатся различные элементы для поддержания жизнедеятельности организма, один из них — глюкоза — основной источник энергии. Чувство голода — это сигнал, что запас энергии заканчивается и его нужно пополнить. В среднем при сбалансированном питании запасов глюкозы, поступающих из пищи, достаточно на 20 часов. Так как во время сна метаболизм замедляется, можно сказать, что запасов хватит на сутки. Соответственно суточное голодание способно пройти безопасно.
Голодание на воде
Похудение путем голодания имеет два вида. Первый из них — голодание на воде, когда человек отказывается на определенный срок от употребления пищи, оставив в рационе только воду. Безусловно, вода — главный источник жизни ( про воду читайте тут ), но в ней нет глюкозы и, соответственно, она не может считаться топливом для организма. Желудок обманывается мнимым насыщением, притупляется чувство голода.
Большинство диетологов допускает, что один день на воде в качестве разгрузки может быть полезен. Но не более.
Сухое голодание
Второй тип — это сухое голодание. Отказ не только от пищи, но и от любых жидкостей. Как известно, человек может прожить без воды от двух до семи дней. Но даже после суток без воды организм столкнется с первыми признаками обезвоживания. А неделя и вовсе грозит летальным исходом.
Этот тип похудения можно отнести к экстремальным. И диетологи, и врачи не рекомендуют его использовать.
Интервальное голодание
Набирающий популярность метод похудения для тех, кто не выдерживает жесткие диеты и многодневные голодовки.
Наиболее приемлемый вариант 16/8 — 16 часов голодания и 8 часов, когда можно принимать пищу. Соответственно, пропускается либо завтрак, либо ужин. Важно не переедать в отведенные для приема пищи часы, в противном случае эффекта не будет. Также полезно сочетать этот способ голодания с тренировками ( как правильно тренироваться, читайте здесь ).
18/6 — вариант с более продолжительным голодным периодом. Он тоже допустим. Более того, ряд японских ученых в своих исследованиях доказали, что за 18 часов голода начинается самопоедание клеток, как правило уничтожаются поврежденные клетки, что может быть полезно при различных воспалительных заболеваниях. Но в этом вопросе многое зависит от индивидуальных качеств организма.
24-часовое голодание
Такое голодание можно практиковать раз в неделю, не чаще. Важно поддерживать водный баланс и плавно выходить из голода. Начинать с соков, в идеале — свежевыжатых, разбавляя их водой, а также бульонов и овощных супов-пюре.
36-часовое голодание
Отказ от пищи на срок более суток может отрицательно повлиять на состояние здоровья. Врачи в целом не рекомендуют подобные испытания над организмом. Но если вы все же решились на них, то частить с ними нельзя — точно не чаще, чем раз в месяц.
Для комфортного проведения 36-часового голодания рекомендуется распределить время следующим способом:
1. Не ужинать в первый день.
2. Второй день — полный отказ от еды.
3. Завтрак на третий день.
Также рекомендуется больше спать ( про сон читайте тут ) и днем занимать себя различными интересными делами и активностями, чтобы не думать постоянно о еде.
Более продолжительное голодание способно привести к пагубным изменениям в организме. В целом уже на третий день голодания начнутся проблемы с желудком. С четвертого по седьмой дни станет разрушаться микрофлора кишечника, нарушится кислотно-щелочной баланс. После седьмого дня накопление кетонов достигнет критической отметки (в обычном состоянии их должно быть немного). Зачастую голодающие отмечают легкость и просветление — это называется кетоновой эйфорией. Такое состояние быстро приводит к отравлению кетонами и коме.
Подготовка и выход из голодания
Так как голодание — это стресс для организма, к нему требуется подготовка. Не стоит наедаться впрок, важно постепенно снизить объём потребляемой пищи, отказаться от мяса, рыбы и молочных продуктов, ввести в рацион больше зелени и овощей, а накануне сделать очистительную клизму.
Возвращаться с голодания также стоит плавно и постепенно. Начать лучше с соков, разведённых водой, затем добавить нежирные бульоны, пюре и каши на воде, далее уже вводить в рацион твёрдую пищу — фрукты, овощи и супы.
Противопоказания
Так как голод — это экстремальное условие для организма, у него имеются противопоказания.
Кому не подходит подобный метод похудения/очищения:
— детям и подросткам;
— беременным и кормящим женщинам;
— людям с индексом массы тела ниже нормы;
— пациентам с заболеваниями эндокринной системы и циррозом печени.
Также стоит отказаться от голодания:
— при инфекционных заболеваниях;
— проблемах с сердечным ритмом;
— нарушениях свертываемости крови.
В нетрадиционной медицине существует теория, что сухое голодание лечит рак. Но это весьма одиозное утверждение, нигде никак не доказанное. Напротив, онкобольным для поддержания организма необходимо питание.
Голодание и медицина
Традиционная медицина не одобряет голодание в формате, который используется для похудения. Но воздержание от пищи часто используется во врачебных целях. Например, несколько часов нельзя питаться перед операцией, чтобы не произошло попадание содержания желудка в дыхательные пути.
В классической медицине любое голодание должно проходить под наблюдением врача (или в стационаре). И это правильно. Потому что безграмотное голодание способно нанести серьезный ущерб здоровью.
Выделите ошибку в тексте
и нажмите ctrl + enter
Алгоритм метаболизма
автор: А. Ю. Барановский, д. м. н., профессор, заведующий кафедрой гастроэнтерологии и диетологии Северо-Западного государственного медицинского университета им. И. И. Мечникова, врач высшей категории
Решение организационных вопросов питания у лиц старших возрастов, разработка и назначение индивидуализированных рационов рационального, профилактического и лечебного питания в существенной степени зависит от правильной оценки врачом нутриционного статуса пожилого человека, особенностей состояния обменных процессов. Именно поэтому профессионально грамотный клиницист, участвующий в решении проблем лечебно-профилактического питания у лиц пожилого и старческого возраста, должен быть достаточно хорошо ориентирован в области основ клинической биохимии и физиологии питания стареющего организма.
Белковый обмен
Белки — сложные азотсодержащие биополимеры, мономерами которых служат аминокислоты (органические соединения, содержащие карбоксильные и аминные группы). Их биологическая роль многообразна. Белки выполняют в организме пластические, каталитические, гормональные, транспортные и другие функции, а также обеспечивают специфичность. Значение белкового компонента питания заключается прежде всего в том, что он служит источником аминокислот.
Аминокислоты делятся на эссенциальные и неэссенциальные в зависимости от того, возможно ли их образование в организме из предшественников. К незаменимым аминокислотам относятся гистидин, лейцин, изолейцин, лизин, метионин, фенилаланин, триптофан и валин, а также цистеин и тирозин, синтезируемые соответственно из метионина и фенилаланина. Девять заменимых аминокислот (аланин, аргинин, аспарагиновая и глутамовая кислоты, глутамин, глицин, пролин и серин) могут отсутствовать в рационе, так как способны образовываться из других веществ. В организме также существуют аминокислоты, которые продуцируются путем модификации боковых цепей вышеперечисленных (например, компонент коллагена — гидроксипролин — и сократительных белков мышц — 3-метилгистидин).
Большинство аминокислот имеют изомеры (D- и L-формы), из которых только L-формы входят в состав белков человеческого организма. D-формы могут участвовать в метаболизме, превращаясь в L-формы, однако утилизируются гораздо менее эффективно.
Взаимоотношение аминокислот
По химическому строению аминокислоты делятся на двухосновные, двухкислотные и нейтральные с алифатическими и ароматическими боковыми цепями, что имеет большое значение для их транспорта, поскольку каждый класс аминокислот обладает специфическими переносчиками. Аминокислоты с аналогичным строением обычно вступают в сложные, часто конкурентные взаимоотношения.
Так, ароматические аминокислоты (фенилаланин, тирозин и триптофан) близкородственны между собой. Хотя фенилаланин является незаменимой, а тирозин — синтезируемой из него заменимой аминокислотой, наличие тирозина в рационе как будто бы «сберегает» фенилаланин. Если фенилаланина недостаточно или его метаболизм нарушен (например, при дефиците витамина С) — тирозин становится незаменимой аминокислотой. Подобные взаимоотношения характерны и для серосодержащих аминокислот: незаменимой — метионина — и образующегося из него цистеина.
Триптофан в ходе превращений, для которых необходим витамин В 6 (пиридоксин), включается в структуру НАД и НАДФ, то есть дублирует роль ниацина. Приблизительно половина обычной потребности в ниацине удовлетворяется за счет триптофана: 1 мг ниацина пищи эквивалентен 60 мг триптофана. Поэтому состояние пеллагры может развиваться не только при недостатке витамина РР в рационе, но и при нехватке триптофана или нарушении его обмена, в том числе вследствие дефицита пиридоксина.
Аминокислоты также делятся на глюкогенные и кетогенные, в зависимости от того, могут ли они при определенных условиях становиться предшественниками глюкозы или кетоновых тел (см. табл. 1).
Таблица 1. Классификация аминокислот
Виды | Эссенциальные аминокислоты | Неэссенциальные аминокислоты |
Алифатические | Валин (Г), лейцин (К), изолейцин (Г, К) | Глицин (Г), аланин (Г) |
Двухосновные | Лизин (К), гистидин (Г, К)* | Аргинин (Г)* |
Ароматические | Фенилаланин (Г, К), триптофан (Г, К) | Тирозин (Г, К)** |
Оксиаминокислоты | Треонин (Г, К) | Серин (Г) |
Серосодержащие | Метионин (Г, К) | Цистеин (Г)** |
Дикарбоновые и их амиды | Глутамовая кислота (Г), глутамин (Г), аспарагиновая кислота (Г), аспарагин (Г) | |
Иминокислоты | Пролин (Г) |
Обозначения: Г — глюкогенные, К — кетогенные аминокислоты; * — гистидин незаменим у детей до года; ** — условно-незаменимые аминокислоты (могут синтезироваться из фенилаланина и метионина).
Необходимые азотсодержащие соединения
Поступление азотсодержащих веществ с пищей происходит в основном за счет белка и в менее значимых количествах — свободных аминокислот и других соединений. В животной пище основное количество азота содержится в виде белка. В продуктах растительного происхождения большая часть азота представлена небелковыми соединениями, также в них содержится множество аминокислот, которые не встречаются в организме человека и зачастую не могут метаболизироваться им.
Синтез пуриновых оснований
Человек не нуждается в поступлении с пищей нуклеиновых кислот. Пуриновые и пиримидиновые основания синтезируются в печени из аминокислот, а избыток этих оснований, поступивших с пищей, выводится в виде мочевой кислоты.
Прием белка
Обычный (но не оптимальный) ежедневный прием белка у среднестатистического человека составляет приблизительно 100 г. К ним присоединяется примерно 70 г белка, секретируемого в полость желудочно-кишечного тракта. Из этого количества абсорбируется около 160 г. Самим организмом в сутки синтезируется в среднем 240–250 г белка. Такая разница между поступлением и эндогенным преобразованием свидетельствует об активности процессов обратного восстановления исходного сложного химического соединения из «осколков», образовавшихся при его метаболизме (ресинтеза белков из аминокислот, а аминокислот из аммиака и «углеродных скелетов» аминокислот).
Азотное равновесие
Для здорового человека характерно состояние азотного равновесия, когда потери белка (с мочой, калом, эпидермисом и т. п.) соответствуют его количеству, поступившему с пищей. При преобладании катаболических процессов возникает отрицательный азотный баланс, который характерен для низкого потребления азотсодержащих веществ (низкобелковых рационов, голодания, нарушения абсорбции белка) и многих патологических процессов, вызывающих интенсификацию распада (опухолей, ожоговой болезни и т. п.). При доминировании синтетических процессов количество вводимого азота преобладает над его выведением, и возникает положительный азотный баланс, характерный для детей, беременных женщин и реконвалесцентов после тяжелых заболеваний.
После прохождения энтерального барьера белки поступают в кровь в виде свободных аминокислот. Следует отметить, что клетки слизистой оболочки желудочно-кишечного тракта могут метаболизировать некоторые аминокислоты (в том числе глутамовую кислоту и аспарагиновую кислоту в аланин). Способность энтероцитов видоизменять эти аминокислоты, возможно, позволяет избежать токсического эффекта при их избыточном введении.
Аминокислоты, как поступившие в кровь при переваривании белка, так и синтезированные в клетках, в крови образуют постоянно обновляющийся свободный пул аминокислот, который составляет около 100 г.
Путь белка
75 % аминокислот, находящихся в системной циркуляции, представлены аминокислотами с ветвящимися цепями (лейцином, изолейцином и валином). Из мышечной ткани в кровоток выделяются аланин, который является основным предшественником синтеза глюкозы, и глутамин. Многие свободные аминокислоты подвергаются трансформации в печени. Часть свободного пула инкорпорируется в белки организма и при их катаболизме вновь поступает в кровоток. Другие непосредственно подвергаются катаболическим реакциям. Некоторые свободные аминокислоты используются для синтеза новых азотсодержащих соединений (пурина, креатинина, адреналина) и в дальнейшем деградируют, не возвращаясь в свободный пул, в специфичные продукты распада.
Роль печени
Постоянство содержания различных аминокислот в крови обеспечивает печень. Она утилизирует примерно ⅓ всех аминокислот, поступающих в организм, что позволяет предотвратить скачки в их концентрации в зависимости от питания.
Первостепенная роль печени в азотном и других видах обмена обеспечивается ее анатомическим расположением — продукты переваривания попадают по воротной вене непосредственно в этот орган. Кроме того, печень непосредственно связана с экскреторной системой — билиарным трактом, что позволяет выводить некоторые соединения в составе желчи. Гепатоциты — единственные клетки, обладающие полным набором ферментов, участвующих в аминокислотном обмене. Здесь выполняются все основные процессы азотного метаболизма: распад аминокислот для выработки энергии и обеспечения глюконеогенеза, образование заменимых аминокислот и нуклеиновых кислот, обезвреживание аммиака и других конечных продуктов. Печень является основным местом деградации большинства незаменимых аминокислот (за исключением аминокислот с ветвящимися цепями).
Инсулиновый ответ
Синтез азотсодержащих соединений (белка и нуклеиновых кислот) в печени весьма чувствителен к поступлению их предшественников из пищи. После каждого приема пищи наступает период повышенного внутрипеченочного синтеза белков, в том числе альбумина. Аналогичное усиление синтетических процессов происходит и в мышцах. Эти реакции связаны прежде всего с действием инсулина, который секретируется в ответ на введение аминокислот и/или глюкозы.
Некоторые аминокислоты (аргинин и аминокислоты с ветвящимися цепями) усиливают продукцию инсулина в большей степени, чем остальные. Другие (аспарагин, глицин, серин, цистеин) стимулируют секрецию глюкагона, который усиливает утилизацию аминокислот печенью и воздействует на ферменты глюконеогенеза и аминокислотного катаболизма. Благодаря этим механизмам происходит снижение уровня аминокислот в крови после поступления их с пищей. Действие инсулина наиболее выражено для аминокислот, содержащихся в кровотоке в свободном виде (аминокислот с ветвящимися цепями), и малозначимо для тех, которые транспортируются в связанном виде (триптофана). Обратное инсулину влияние на белковый метаболизм оказывают глюкокортикостероиды.
Аминокислоты на «экспорт»
Печень обладает повышенной скоростью синтеза и распада белков по сравнению с другими тканями организма (кроме поджелудочной железы). Это позволяет ей синтезировать «на экспорт», а также быстро обеспечивать лабильный резерв аминокислот в период недостаточного питания за счет распада собственных белков.
Особенность внутрипеченочного белкового синтеза заключается в том, что он усиливается под действием гормонов, которые в других тканях производят катаболический эффект. Так, при голодании белки мышц, для обеспечения организма энергией, подвергаются распаду, а в печени одновременно усиливается синтез белков, являющихся ферментами глюконеогенеза и мочевинообразования.
Избыток белка и голодание
Прием пищи, содержащей избыток белка, приводит к интенсификации синтеза в печени и в мышцах, образованию избыточных количеств альбумина и деградации излишка аминокислот до предшественников глюкозы и липидов. Глюкоза и триглицериды утилизируются как горючее или депонируются, а альбумин становится временным хранилищем аминокислот и средством их транспортировки в периферические ткани.
При голодании уровень альбумина прогрессивно снижается, а при последующей нормализации поступления белка медленно восстанавливается. Поэтому хотя альбумин и является показателем белковой недостаточности, он низкочувствителен и не реагирует оперативно на изменения в питании.
7 из 10 эссенциальных аминокислот деградируют в печени — либо образуя мочевину, либо впоследствии используясь в глюконеогенезе. Мочевина преимущественно выделяется с мочой, но часть ее поступает в просвет кишечника, где подвергается уреазному воздействию микрофлоры. Аминокислоты с ветвящимися цепями катаболизируются в основном в почках, мышцах и головном мозге.
Роль мышц
Мышцы синтезируют ежедневно 75 г белка. У среднего человека они содержат 40 % от всего белка организма. Хотя белковый метаболизм происходит здесь несколько медленнее, чем в других тканях, мышечный белок представляет собой самый большой эндогенный аминокислотный резерв, который при голодании может использоваться для глюконеогенеза.
Мышцы являются основной мишенью воздействия инсулина: здесь под его влиянием усиливается поступление аминокислот, увеличивается синтез мышечного белка и снижается распад.
В процессе превращений в мышцах образуются аланин и глутамин, их условно можно считать транспортными формами азота. Аланин непосредственно из мышц попадает в печень, а глутамин вначале поступает в кишечник, где частично превращается в аланин. Поскольку в печени из аланина происходит синтез глюкозы, частично обеспечивающий мышцу энергией, получающийся круго- оборот получил название глюкозо- аланинового цикла.
К азотсодержащим веществам мышц также относятся высокоэнергетичный креатин-фосфат и продукт его деградации креатинин. Экскреция креатинина обычно рассматривается как мера мышечной массы. Однако это соединение может поступать в организм с высокобелковой пищей и влиять на результаты исследования содержания его в моче. Продукт распада миофибриллярных белков — 3-метилгистидин — экскретируется с мочой в течение короткого времени и является достаточно точным показателем скорости распада в мышцах — при мышечном истощении скорость его выхода пропорционально снижается.
Механизм голодания
В отсутствие пищи синтез альбумина и мышечного белка замедляется, но продолжается деградация аминокислот. Поэтому на начальном этапе голодания мышцы теряют аминокислоты, которые идут на энергетические нужды. В дальнейшем организм адаптируется к отсутствию новых поступлений аминокислот (снижается потребность в зависящем от белка глюконеогенезе за счет использования энергетического потенциала кетоновых тел) и потеря белка мускулатуры уменьшается.
Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!
Роль почек
Почки не только выводят конечные продукты азотного распада (мочевину, креатинин и др.), но и являются дополнительным местом ресинтеза глюкозы из аминокислот, а также регулируют образование аммиака, компенсируя избыток ионов водорода в крови.
Глюконеогенез и функционирование кислотно-щелочной регуляции тесно скоординированы, поскольку субстраты этих процессов появляются при дезаминировании аминокислот: углерод для синтеза глюкозы и азот — для аммиака. Существует даже мнение, что именно производство глюкозы является основной реакцией почек на ацидоз, а образование аммиака происходит вторично.
Белок в нервной ткани
Для нервной ткани характерны более высокие концентрации аминокислот, чем в плазме. Это позволяет обеспечить мозг достаточным количеством ароматических аминокислот, являющихся предшественниками нейромедиаторов.
Некоторые заменимые аминокислоты, такие как глутамат (из которого при участии пиридоксина образуется гамма-аминомасляная кислота) и аспартат, также обладают влиянием на возбудимость нервной ткани. Их концентрация здесь высока, при этом заменимые аминокислоты способны синтезироваться и на месте.
Сон после еды
Специфическую роль играет триптофан, являющийся предшественником серотонина. Именно с повышением концентрации триптофана (а следовательно, и серотонина) связана сонливость после еды. Такой эффект особенно выражен при приеме больших количеств триптофана совместно с углеводистой пищей. Повышенная секреция инсулина снижает уровень в крови аминокислот с ветвящимися цепями, которые при преодолении барьера «кровь — мозг» обладают конкурентными взаимоотношениями с ароматическими аминокислотами, но в то же время не оказывает влияния на концентрацию связанного с альбумином триптофана. Благодаря подобным эффектам препараты триптофана могут использоваться в психиатрической практике.
При заболеваниях печени
Ограничение ароматических аминокислот в рационе, в связи с их влиянием на центральную нервную систему, имеет профилактическое значение при ведении пациентов с печеночной энцефалопатией. Элементные аминокислотные диеты с преимущественным содержанием лейцина, изолейцина, валина и аргинина помогают избежать развития белковой недостаточности у гепатологических больных и в то же время не приводят к возникновению печеночной комы.
Основные пластические функции протеиногенных аминокислот перечислены в таблице 2.
Таблица 2. Основные функции аминокислот
Аланин | Предшественник глюконеогенеза, переносчик азота из периферических тканей в печень |
Аргинин | Непосредственный предшественник мочевины |
Аспарагиновая кислота | Предшественник глюконеогенеза, предшественник пиримидина, используется для синтеза мочевины |
Глутаминовая кислота | Донор аминогрупп для многих реакций, переносчик азота (проникает через мембраны легче, чем глутамин), источник аммиака, предшественник ГАМК |
Глицин | Предшественник пуринов, глютатиона и креатинина, входит в состав гемоглобина и цитохромов, нейротрансмиттер |
Гистидин | Предшественник гистамина, донор углерода |
Лизин | Предшественник карнитина (транспорт жирных кислот), составляющая коллагена |
Метионин | Донор метальных групп для многих синтетических процессов (в т. ч. холина, пиримидинов), предшественник цистеина, участвует в метаболизме никотиновой кислоты и гистамина |
Фенилаланин | Предшественник тирозина |
Серин | Составляющая фосфолипидов, предшественник сфинголипидов, предшественник этаноламина и холина, участвует в синтезе пуринов и пиримидинов |
Триптофан | Предшественник серотонина и никотинамида |
Тирозин | Предшественник катехоламинов, допамина, меланина, тироксина |
Цистеин | Предшественник таурина (желчные кислоты), входит в состав глютатиона (антиоксидантная система) |
Нормы потребления белка
Современные рекомендации по обеспечению пожилых людей и стариков основными питательными веществами, в первую очередь белками, свидетельствуют о целесообразном некотором снижении суточного количества белковых продуктов в пищевом рационе до 0,75–0,8 г/кг веса. Это связано с тем, что интенсивность основных физиологических функций с каждым десятилетием жизни человека после 50 лет снижается почти на 10 % (Rogers J., Jensen G., 2004), потребность белка уменьшается за счет инволюции синтетических и пластических процессов и ферментообразования, продукции гормонов, ряда биологически активных веществ, обеспечения мышечной деятельности и т. д.
Рекомендуемые нормы потребления для белка с учетом приведенных выше показателей составляют 55–62 г/сут (для мужчины весом 77 кг в возрасте 60–70 лет) и 45–52 г/сут (для женщины весом 65 кг в возрасте 60–70 лет) по выводам IV Американского национального исследования по оценке здоровья и питания (2006).
Вместе с тем установлено, что при сохранении физической активности пожилых людей (профессиональной физической нагрузки, занятий физкультурой, работы на дачном участке и т. п.) для поддержания азотного равновесия организма требуется повышение белкового обеспечения пожилого человека в количестве 1–1,25 г/кг в день. Эта же квота пищевого белка полностью обеспечит потребности пожилого человека, находящегося в состоянии стресса, болезни или ранения (Lowenthal D. T., 1990).
Рис. 1. Влияние пищевых веществ на развитие болезней избыточного питания (по А. А. Покровскому)
Дефицит белка = старение
Важно отметить, что организм пожилого человека очень чувствителен как к дефициту экзогенно поступающих белков, так и к их избытку. В условиях белкового дефицита прогрессирующе развиваются процессы дистрофии и атрофии клеточных структур, в первую очередь мышечной ткани, слизистых оболочек (желудочно-кишечного тракта, дыхательной системы и др.), паренхиматозных органов (поджелудочной железы, печени, эндокринных желез и др.), структур иммунной системы. Белковый дефицит питания активизирует процессы старения организма.
Механизмы патологического действия на организм пожилого и старого человека пищевой белковой перегрузки связаны в первую очередь с белковой «агрессией» печени и связанной с этим несостоятельностью ферментных систем, неполной деполимеризацией всех фракций белка, накоплением в крови токсических продуктов незавершенных окислительно-восстановительных реакций и т. д.
Белковая перегрузка
Интоксикационный процесс метаболического генеза при избыточном белковом питании пожилых и старых людей многократно усиливается по причине развития процессов гнилостной кишечной диспепсии в условиях относительной ферментной недостаточности желудка, поджелудочной железы, тонкой кишки и развития синдромов мальдигестии и мальабсорбции, а также кишечного дисбиоза (Барановский А. Ю., Кондрашина Э. А., 2008).
Белковая пищевая перегрузка в рамках интоксикационного синдрома способствует перевозбуждению центральной нервной системы, иногда — состояниям, близким к неврозам. При этом наблюдается повышенный расход витаминов в организме с формированием витаминной недостаточности.
При длительном высокобелковом питании вначале наблюдается компенсаторное усиление, а затем угнетение секреторной функции желудка и поджелудочной железы, повышается риск развития таких заболеваний, как подагра, мочекаменная болезнь.
В следующем выпуске журнала «Практическая диетология» мы продолжим рассказ о геронтологических особенностях основных видов обмена веществ пациентов пожилого и старческого возраста — углеводном и жировом обмене.
// ПД
Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!