при какой температуре происходит расширение металла

При какой температуре происходит расширение металла

при какой температуре происходит расширение металла. Смотреть фото при какой температуре происходит расширение металла. Смотреть картинку при какой температуре происходит расширение металла. Картинка про при какой температуре происходит расширение металла. Фото при какой температуре происходит расширение металла

Как известно, не все металлы одинаковы, и температурное воздействие может менять их структуру по-разному. Но основная масса распространенных металлов приобретают пластичность при нагревании. Среди них: алюминий, железо, сталь, латунь и т.д. То есть, при воздействии температуры, они способны растягиваться, меняя свою структуру. В это время металл можно ковать, придавая ему любую форму по желанию мастера. Однако есть металлы, которые не обладают пластичностью при нагревании, и во время попытки их ковать, совершая удары, они могут просто трескаться и разрушаться. Среди них: цинк, серый чугун, сплав олова и бронзы, и др.

Поведение металлов при воздействии разных температур

Железо и сталь – самые популярные металлы, которые хорошо поддаются температурному воздействию и ковке. Однако, необходимо учитывать тот факт, что при воздействии разной температуры эти металлы и ведут себя по-разному. Например, если нагреть сталь до температуры чуть выше 900°С, то ковать ее будет 2,5 раза сложнее, нежели если нагреть металл до 1200 °С. Следовательно, чем меньше температура нагрева, тем сложнее ковать. Это логично. Но необходимо знать, что нагрев стали уже до 600 °С способствует изменению ее структуры и улучшается пластичность. Температуру регулируют в зависимости от вида работ, которые планируют проводить со сталью.

Интересный факт: при нагревании стали от комнатной температуры, например, от 15-20 градусов и до 600 °С процесс видоизменения металла происходит по-разному. На значении в 300 °С наступает первый предел прочности на растяжение, но в этот момент металл становится очень хрупким. И только после значения в 600 °С сталь можно начинать растягивать и ковать. Далее, чем выше поднимается температура, тем ниже падает прочность стали. При 1200°С-1300°С, в сравнении со сталью комнатной температуры, ее прочность падает в 30 раз.

Что касается цветных металлов и других сплавов, то температура плавления у них меньше, чем у стали, а значит и все значения уменьшатся. Например, алюминий становится в 30 раз менее прочным уже при нагревании до 600 °С. В таком состоянии их можно легко деформировать, не затрачивая при этом особых усилий.

Максимальная температура для снижения прочности металлолома

Если сталь нагревать сильнее, чем до 1300 °С, то начинается превращение металла в жидкую фазу. Для того, чтобы этого не случилось, на пунктах приема металлолома установлены специальные печи, с максимальной температурой 1400 °С. Если поднимать температуру выше этого значения, то сталь расплавится. Этого допустить нельзя, ведь при, так называемом, пережоге стали наблюдаются негативные реакции в следующей последовательности:

Все эти факторы приводят к порче материала и неисправному браку. Именно поэтому печь должна быть отрегулирована положенным образом, а металл должен находится в ней только определённое короткое время. Во избежание пережога.

Прием металлолома metprom-group.ru оснащен всей необходимой специализированной и современной техникой, как для транспортировки и погрузки лома, так и для его дальнейшей обработки. Также, компания предлагает услуги вывоза лома с территории заказчика и очень выгодные цены. Сдав ненужный лом, вы сможете не только подзаработать, но и дать металлу вторую жизнь, сэкономив, таким образом, ценные ресурсы.

При любом соединении деталей, механическом, клеевом, сварном, важно не только получить прочное соединение – не менее важна его долговечность в условиях эксплуатации изделия. Испытать начальную прочность как правило, несложно – устойчивость клеевого соединения к различным типам нагрузки (удары, вибрации, отрыв, расщепление) можно определить испытаниями по стандартным методикам. А вот испытание долговечности соединения представляет собой более сложную и долгую задачу. Необходимо представлять себе условия эксплуатации изделия, собранного с помощью клея, а зная их, оценить поведение соединенных материалов. Так, коррозия под клеевым слоем, встречающаяся при работе клеевого соединения в агрессивных условиях, например, в регионах с морским климатом, в которых сочетается высокая влажность, воздействие мелкодиперсного соляного тумана и, часто, высокие температуры. Это требует длительных испытаний в климатической камере или камере соляного тумана.
Однако существует еще один фактор, который часто упускают из вида, хотя его влияние на надежность, долговечность клеевого соединения очень существенно. Его учет усложняется тем, что протестировать его можно только на полноразмерном изделии точнее – на полноразмерном клеевом соединении. Речь пойдет о различном температурном (или тепловом) расширении материалов. При изменении температуры любой твердый материал сжимается или расширяется. Как правило, при сжатие происходит при охлаждении, а расширение при нагреве (хотя бывают и материалы-исключения, у которых изменение температуры приводит к обратному результату). Для разных материалов одинаковое изменение температуры приводит к различному изменению размера. Поэтому при соединении различных материалов, в тех случаях, когда изделие будет подвергаться температурным перепадам, необходимо учитывать, что изменение температуры приведет к появлению дополнительной сдвиговой нагрузки на клеевой шов.
Насколько велик может быть эффект разницы температурных расширений? Как определить, не опасен ли он для нашего соединения? Как склеить изделие, учитывая этот эффект? На эти вопросы я постараюсь ответить ниже.

Коэффициент теплового (температурного) расширения является характеристикой каждого материала и показывает насколько этот материал увеличивается (уменьшается) в размере при изменении температуры на один градус. Абсолютная величина расширения или сжатия, кроме коэффициента, зависит от размера изделия и изменения температуры.
Из часто используемых материалов, наиболее низким коэффициентом теплового расширения обладает стекло; несколько выше коэффициент расширения у металлов, значительно выше у пластиков. Коэффициенты теплового расширения некоторых материалов приведены в таблице.

МатериалКоэффициент теплового расширения, мм/мм*К
Стекло9 х 10-6
Сталь12-14 х 10-6
Алюминий24 х 10-6
Полиметилметакрилат (ПММА)74 х 10-6
Поликарбонат68 х 10-6
Полипропилен86 х 10-6
Полиэфир120 х 10’6

Источник

До какой температуры нужно нагреть металл чтобы он расширился

при какой температуре происходит расширение металла. Смотреть фото при какой температуре происходит расширение металла. Смотреть картинку при какой температуре происходит расширение металла. Картинка про при какой температуре происходит расширение металла. Фото при какой температуре происходит расширение металла

Как известно, не все металлы одинаковы, и температурное воздействие может менять их структуру по-разному. Но основная масса распространенных металлов приобретают пластичность при нагревании. Среди них: алюминий, железо, сталь, латунь и т.д. То есть, при воздействии температуры, они способны растягиваться, меняя свою структуру. В это время металл можно ковать, придавая ему любую форму по желанию мастера. Однако есть металлы, которые не обладают пластичностью при нагревании, и во время попытки их ковать, совершая удары, они могут просто трескаться и разрушаться. Среди них: цинк, серый чугун, сплав олова и бронзы, и др.

Поведение металлов при воздействии разных температур

Железо и сталь – самые популярные металлы, которые хорошо поддаются температурному воздействию и ковке. Однако, необходимо учитывать тот факт, что при воздействии разной температуры эти металлы и ведут себя по-разному. Например, если нагреть сталь до температуры чуть выше 900°С, то ковать ее будет 2,5 раза сложнее, нежели если нагреть металл до 1200 °С. Следовательно, чем меньше температура нагрева, тем сложнее ковать. Это логично. Но необходимо знать, что нагрев стали уже до 600 °С способствует изменению ее структуры и улучшается пластичность. Температуру регулируют в зависимости от вида работ, которые планируют проводить со сталью.

Интересный факт: при нагревании стали от комнатной температуры, например, от 15-20 градусов и до 600 °С процесс видоизменения металла происходит по-разному. На значении в 300 °С наступает первый предел прочности на растяжение, но в этот момент металл становится очень хрупким. И только после значения в 600 °С сталь можно начинать растягивать и ковать. Далее, чем выше поднимается температура, тем ниже падает прочность стали. При 1200°С-1300°С, в сравнении со сталью комнатной температуры, ее прочность падает в 30 раз.

Что касается цветных металлов и других сплавов, то температура плавления у них меньше, чем у стали, а значит и все значения уменьшатся. Например, алюминий становится в 30 раз менее прочным уже при нагревании до 600 °С. В таком состоянии их можно легко деформировать, не затрачивая при этом особых усилий.

Максимальная температура для снижения прочности металлолома

Если сталь нагревать сильнее, чем до 1300 °С, то начинается превращение металла в жидкую фазу. Для того, чтобы этого не случилось, на пунктах приема металлолома установлены специальные печи, с максимальной температурой 1400 °С. Если поднимать температуру выше этого значения, то сталь расплавится. Этого допустить нельзя, ведь при, так называемом, пережоге стали наблюдаются негативные реакции в следующей последовательности:

Все эти факторы приводят к порче материала и неисправному браку. Именно поэтому печь должна быть отрегулирована положенным образом, а металл должен находится в ней только определённое короткое время. Во избежание пережога.

Прием металлолома metprom-group.ru оснащен всей необходимой специализированной и современной техникой, как для транспортировки и погрузки лома, так и для его дальнейшей обработки. Также, компания предлагает услуги вывоза лома с территории заказчика и очень выгодные цены. Сдав ненужный лом, вы сможете не только подзаработать, но и дать металлу вторую жизнь, сэкономив, таким образом, ценные ресурсы.

Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей (Таблица)

при какой температуре происходит расширение металла. Смотреть фото при какой температуре происходит расширение металла. Смотреть картинку при какой температуре происходит расширение металла. Картинка про при какой температуре происходит расширение металла. Фото при какой температуре происходит расширение металла

В таблице приведены средние значения температурного коэффициента линейного расширения ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).

Металл, сплавКоэффициента линейного расширения ɑ, 10-6°С-1
Алюминий2,4
Бронза13-21
Вольфрам (в интервале температур от 0 до 200 °С)4,5
Дуралюмин (при t = 20 °С)23
Золото14
Железо12
Инвар*1,5
Иридий6,5
Константан42339
Латунь17-19
Манганин18
Медь17
Нейзильбер18
Никель14
Нихром (от 20 до 100 °С)14
Олово26
Платина9,1
Платинит** (при t = 20 °С)41920
Платина-иридий*** (от 20 до 100 °С)8,8
Свинец29
Серебро20
Сталь углеродистая43009
Цинк32
Чугун (от 20 до 100 °С).41952
* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов.** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп.*** Из этого сплава изготовлены прототипы килограмма и метра.

Температурный коэффициент линейного расширения твердых веществ

В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура).

ВеществоКоэффициента линейного расширения ɑ, 10-6°С-1
Алмаз1,2
Бетон (при t = 20 °С)41913
Гранит (при t = 20 °С)8
Графит7,9
Древесина (при t = = 20 °С):
— вдоль волокон5,5-5,5
— поперек волокон34-60
Кварц плавленый (при * = 40 °С)0,4
Кирпич (при t = 20 °С)41885
Лед (в интервале температур от —20 до 0 °С)51
Парафин (от 16 до 48 °С)70*
Дуб (от 2 до 34 °С):
— вдоль волокон4,9
— поперек волокон54,4
Сосна (от 2 до 34 °С):
— вдоль волокон5,4
— поперек волокон34
Стекло лабораторное41885
Стекло оконное (от 20 до 200 °С)10
Фарфор2,5-4,0
Шифер (при t = 20 °С)10
* коэффициент объемного расширения парафина.

Температурный коэффициент обьемного расширения жидкостей

В таблице приведены средние значения температурного коэффициента обьемного расширения β жидкостей при температуре 20 °С (если не указана иная).

Инженеру про алюминий

Наиболее привлекательным для инженеров физическим свойством алюминия является его плотность 2,7 г/см3, что составляет всего лишь треть от плотности сталей.

Коррозионная стойкость алюминия

Вторым по важности свойством является его хорошая коррозионная стойкость, хотя алюминий с точки зрения химии и не слишком благородный металл.

Все это потому, что «свежий» алюминий (и алюминиевые сплавы) реагирует с кислородом и водяным паром в воздухе с образованием тонкой, плотной оксидной пленки, которая защищает нижележащий металл от дальнейшего взаимодействия с окружающей средой.

Поэтому технический алюминий и большинство его сплавов без легирования медью показывают очень хорошее сопротивление коррозии в жидкостях с рН в кислотном интервале от 5 до 8, которому соответствуют и большинство атмосферных условий окружающей среды.

Температурное расширение алюминия

Линейное температурное расширение алюминия и его сплавов составляет 24·10-6 на 1 градус Цельсия – в два раза больше чем у сталей. Это необходимо учитывать во многих конструкциях, в которых необходимо обеспечивать свободное температурное расширение элементов. При ограничении температурного расширение (или сжатия) в алюминиевом элементе из-за более низкого модуля упругости возникают напряжения, величина которых составляет 2/3 от напряжений, которые возникли бы в аналогичном стальном элементе.

Модуль упругости алюминия

Модуль упругости алюминия – 70000 МПа, только треть от модуля упругости сталей. Это влечет за собой существенные последствия для геометрии конструкции, так как прогибы балок, несущая способность колонн, т.е. их боковое выпучивание или местное выпучивание прямо зависят от модуля упругости.

Жесткость алюминиевых профилей

Во многих строительных конструкциях критическим параметром профилей является их жесткость. Если стальной профиль заменять на алюминиевый с сохранением его жесткости, то утолщать в три раза все стенки не совсем экономично, так как алюминий легче стали как раз в те же три раза. Однако облегчение конструкций за счет применения алюминия – это естественное стремление, как по физическим, так и по экономическим причинам.

При проектировании балок есть практичное и проверенное правило: увеличивайте все размеры кроме ширины в 1,4 раза и получите поперечное сечение с моментом инерции почти в три раза больше. Тогда для профиля с той же жесткостью (Е · I) сэкономите около 50 % веса. При этом в некоторой степени компенсируется потеря жесткости в отношении бокового выпучивания.

С учетом того, что часто стандартные стальные профили являются весьма не оптимальными, можно сэкономить и больше чем 50 % веса. Это хорошо видно из рисунка 1. Если нет ограничений по высоте, и боковое выпучивание не является конструкционным параметром, то можно сэкономить до 60 % веса.

Если жесткость элемента не важна, а прочность стали близка к прочности алюминиевого сплава, то экономия может быть и до 70 %, но это уже окончательный предел возможной экономии веса.

Эти рассуждения приводят ко второму важному моменту. Если момент инерции профиля увеличивается в три раза при увеличении высоты профиля только в 1,4 раза, то момент сопротивления сечения увеличится соответственно в 3:1,4=2,1 раза. Поэтому напряжения в алюминиевой балке по сравнению со стальной будут в два с лишним раза меньше. Теперь понятно, почему конструктору не надо сразу «хвататься» за высокопрочные алюминиевые сплавы, и почему менее легированные алюминиевые сплавы 6060 и 6063 (АД31) настолько популярны.

Нагрев алюминия

Как и у других металлов прочность алюминия с повышением температуры снижается. До некоторых температур это явление обратимо, то есть после охлаждения материал возвращается к тем же свойствам, что и до нагрева. До температуры около 80 °С падением прочности можно пренебречь для всех сплавов и состояний. Выше 80 °С некоторые конструкторские ситуации могут потребовать учета эффекта ползучести.

Термически упрочненные сплавы начинают терять прочность при температурах выше 110 °С, причем степень этого явления зависит от длительности нагрева. Сплавы, не упрочняемые термической обработкой, в нагартованных состояниях начинают терять прочность при температурах выше 150 °С и также в зависимости от длительности нагрева.

После нагрева термически не упрочняемых сплавов в отожженном состоянии «О» необратимой потери прочности не происходит.

Считается, что короткий нагрев термически упрочненных алюминиевых профилей до температуры 180-200 °C в течение 10-15 минут, который происходит при «оплавлении» порошковых красок, не приводит к серьезной потере прочности.

Сварка алюминиевых сплавов

Намного серьезней является потеря прочности алюминиевых сплавов при сварке. Здесь температура поднимается настолько высоко из-за локального плавления, что падение прочности вблизи сварного шва надо обязательно принимать во внимание. Термически не упрочняемые сплавы теряют всю свою прочность, полученную при нагартовке, и возвращаются к отожженному состоянию «О».

Термически упрочняемые алюминиевые сплавы в состоянии Т6 теряют приблизительно 40 % их прочности (рисунок 2) за исключением сплава 7020, который теряет только 20 %. Все эти сплавы не доходят до состояния полного отжига, поскольку неизбежен определенный эффект закалки при охлаждении шва.

Требования к прочностным характеристикам материала в зоне сварного шва устанавливают и контролируют по результатам испытаний образцов.

Источник: R. Gitter Selection of structural alloys, Brussels 2008

Свойства металлов — скрытая теплота плавления, теплопроводность, электросопротивление, термический коэффициент линейного расширения

Чтобы расплавить твердое вещество, т.е. перевести его в жидкое состояние, требуется не только нагреть его до температуры плавления, но еще затратить дополнительную тепловую энергию, которая не повышает температуры расплавляемого тела, а идет на разрушение кристаллической структуры.

Пока твердое вещество не перейдет все целиком в жидкое состояние, температура не будет повышаться выше температуры плавления, несмотря на приток тепла и на очень высокую температуру источника тепловой энергии. Повышенная мощность источника тепла может лишь ускорить расплавление, но температура плавящегося вещества будет оставаться постоянной, пока не произойдет его полное расплавление.

Количество тепла, идущего на превращение 1 кг твердого вещества при температуре, называется скрытой теплотой плавления и выражается в больших калориях (см. табл. 1).

Теплопроводность

Свойство металла проводить тепло называется теплопроводностью. Теплопроводность характеризуется коэффициентом теплопроводности, показывающим, сколько калорий тепла может пройти в единицу времени сквозь 1 см² вещества при разности температур на двух противоположных гранях кубика в 1° (см. табл. 1), и обозначается буквой λ.

Теплопроводность алюминия в пять раз больше теплопроводности чугуна, и поэтому алюминиевые сплавы часто заменяют чугун при изготовлении поршней двигателей внутреннего сгорания. Кроме того, поршень из алюминиевого сплава, будучи легче чугунного примерно в три раза, облегчает вес конструкции.

Металлы с большой теплопроводностью в то же время являются лучшими проводниками электричества.

Электросопротивление

За единицу электрического сопротивления принято сопротивление ртутного столба длиной 106,3 см. с поперечным сечением 1 см² при 01°С. Эта единица называется омом (обозначается Ω). Чем больше длина проводника и чем меньше поперечное сечение проводника из разных металлов имеют различное сопротивление, что характеризуется удельным сопротивлением.

Удельное сопротивление показывает, какое сопротивление имеет проводник из данного металла длинной 1м и сечением 1мм² (см. табл. 1).Для всех металлов характерно повышение электросопротивления с повышением температуры в отличие от неметаллических материалов, электросопротивление которых при нагревании уменьшается.

Медь и алюминий, обладая самым малым электросопротивлением из всех металлов (за исключением серебра), являются основными металлами электропроводов.

Металлами и сплавами с высоким сопротивлением пользуются, когда хотят электрическую энергию превратить в тепловую. Количество теплоты, выделяемое в проводнике током определенной силы, прямо пропорционально сопротивлению проводника.

Сплавам для элементов обычных нагревательных приборов (электропечей, плит, чайников, утюгов, электропаяльников) служат нихром и др. Для нити в лампах накаливания применяют вольфрам, который, не плавясь, выдерживает температуру более 2000°. Однако такую нить можно нагревать лишь в вакууме. Кислород воздуха ее окисляет.

Термический коэффициент линейного расширения

Приращение длины предмета на единицу длины при нагревании его на 1° называется термическим коэффициентом линейного расширения α.
Так как коэффициент α очень мал, то в таблицах его значение обычно дается с коэффициентом 10 –6, т.е в миллионных долях первоначальной длины, измеренной при 0°. Свойство металлов расширяться при нагревании и сжиматься при охлаждении необходимо учитывать при изготовлении металлических сооружений и деталей машин.

Коэффициент линейного расширения может считаться почти постоянным при небольших изменениях температуры. При сильном нагревании он может значительно изменять свою величину. Имеются сплавы, обладающие особенно малой величиной α. Например сплав «инвар» (65% Fe и 35% Ni) имеет в пределах от –10 до +90° термический коэффициент линейного расширения α, близкий к нулю; однако при повышении температуры выше 100° он быстро растет.

При застывании отлитых деталей, если тонкие части охлаждаются и сжимаются быстрее, чем толстые, могут получаться трещины там, где возникают вредные внутренние напряжения. Конструктор во избежание трещин должен умело подбирать размеры сечений в отливке.Тепловое расширение имеет большое значение и для сварных конструкций, в которых тоже возникают внутренние напряжения.

Особенно тщательно необходимо учитывать линейное расширение металлов при производстве измерительных и прецизионных (точных) приборов, при изготовлении калибров и деталей машин, работающих при повышенной температуре.

Рубрики: Свойства металлов, применение

Просмотр полной версии : вопрос из метариаловедения. тепловое расширение металла

Вопрос к тем, кто хорошо в институте учился. Как думаете, как изменятся геометрические размеры небольшого отверстия в алюминиевой пластинке при нагревании? Допустим пластика – блин в диаметре 30мм, толщина 2мм. Отверстие по центру, диаметр 2мм. Варианты ответа:
1) Диаметр отв. увеличится
2) Диаметр отв. уменьшится
3) Не изменится

если бы уменьшалось или не изменялось, то не существовало бы процесса горячей посадки.

Увеличится. Если мне не изменяет склероз – то так же, как увеличился бы вынутый из него материал.

как увеличился бы вынутый из него материал

О! это хорошее объяснение.

Диаметр увеличится при нагреве, но очень несущественно.
Мы имеем прежде всего периметр нагреваемой окружности. Естесственно чем периметр больше, тем больше в нём расширяющегося металла, по этому будет зависимость.
Максимальное расширение где то 500-600градусов для сталей, на глаз бардовое начало свечения.

Немного дополню, неважно сделали ли мы наше условное кольцо из проволоки или провертели в толстом материале этот же диаметр, при равных температурных условиях и материале увеличение периметра будет одинаковым.

Если мне не изменяет склероз – то так же, как увеличился бы вынутый из него материал.А если этот лист зажат в раме?

А если этот лист зажат в раме?
Главное хорошенько зажать, тогда еще до нагрева уменьшится.

:LaughOutLoudBulb:Главное хорошенько зажать, тогда еще до нагрева уменьшится.

Боюсь с абсолютной рамой мы тут не осилим математический прогноз деформаций листа в 3D:LaughOutLoudBulb:

Тепловое расширение один из важных параметров при обработке и учитывается.

нагуглил тему (https://forum.degunino.net/lofiversion/index.php/t61840.html)

нагуглил тему (https://forum.degunino.net/lofiversion/index.php/t61840.html)
Изгибные деформации от неравномерности нагрева. Отверстие просто стало не цилиндрическим.
Сварщики постоянно с этим возятся.

Подобный эффект застревания при установке обоймы подшипника в гнездо можно создать ничего не нагревая, а просто дать перекос в долю градуса, вполне хватит чтобы застрял, металл вообще не стоит воспринимать как аморфный твёрдый материал.

ну в нашей задачке условия даже интереснее. дело в том, что отверстие – это самая горячая точка пластины. Т.е. тепловой поток “входит” в пластину через стенки отверстия, полагаю это может несколько нарушить простую модель изотропного линейного расширения.

такое отв. вполне возможно будет если не сжиматься внутрь, то по крайней мере не расширяться.

тут без ANSYS и ему подобных уже никак. Спецы, умевшие решать подобные задачки “на логарифмической линейке” уже покинули этот мир

Т.е. тепловой поток “входит” в пластину через стенки отверстия, полагаю это может несколько нарушить простую модель изотропного линейного расширения.
Это ни чего не меняет.
такое отв. вполне возможно будет если не сжиматься внутрь, то по крайней мере не расширяться.
Будет расширятся.
Если наружная часть не будет иметь возможности расширяться (или она будет охлаждаться) — для возможности расширения отверстия пластинка выгнется.

А, ну вот в двух словах и опередили.
При входе тепла в стенки и более существенном диаметре тепловой контакт либо улучшился при разном линейном расширении нагревателя и пластины, либо ухудшился, при одинаковом материале без изменений естесственно.

Дополню что вся шатунно-поршневая группа двс на тепловых зазорах, материалы от алюминия, силумина и чугуна, до высоколегированных сталей в одном узле, да ещё сам коленвал на горячей посадке. Все коэффициенты разные. Никого не удивляет. Мощности десятки, а то и сотни киловатт.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *